A COMPUTER-AIDED TRAINING TOOL FOR TRAFFIC ENGINEERS

Ricardo G. Sigua Associate Professor Department of Civil Engineering College of Engineering National Center for Transportation Studies University of the Philippines Diliman, Quezon City E-mail Address: <u>rsigua@up-ncts.org.ph</u>

Abstract: A computer program using Pascal language and applying the concept of Knowledge-Based Expert System(KBES) was developed with the novice traffic engineer in mind. It is assumed that the user has some basic knowledge of intersection geometry and how traffic signals are used for controlling traffic. The program follows a logical way of designing the parameters of traffic signal settings. A major feature of the program includes the development of alternative phase patterns commensurate to the traffic volume and geometry of the intersection. The best phase pattern based on Y-value is selected to estimate important signal parameters such as optimum cycle, green time allocation of each movement, intersection degree of congestion, etc.

1. Introduction

Knowledge-Based Expert Systems(KBES) have been widely used in various disciplines. A KBES normally consists of a knowledge-base, an inference engine, and an interface with the user (Figure 1). Strictly speaking, KBES does not depend on algorithms except when computations are required.

Figure 1. Structure of a KBES

1.1 Knowledge-Base

The knowledge-base is developed by sourcing out inputs based on experience of an expert or a number of experts in a particular field. A knowledge-base consists of rules normally written in IF - THEN format. New rules may be added anytime and old ones may be deleted or replaced within the knowledge-base.

1.2 Inference Engine

The inference engine serves as the control level of an expert system. It searches for facts through the knowledge-base and identifies new facts for subsequent inferencing. Inference engines are usually developed to perform either forward or backward chaining, or both

(Figure 2). Forward chaining simply makes use of initial data to arrive at a conclusion while backward chaining moves in the opposite direction. A forward chaining mechanism is considered more appropriate for this KBES.

Figure 2. Inference Engine Mechanism

2. Major Components

2.1 Development of Phase Patterns

The minimization of vehicular and pedestrian conflicts is the primary basis of designing phase patterns for traffic signals. A simplified procedure for signal timing design is shown in **Figure 3**. In designing phase patterns, a trial and error procedure depending on vehicular directional volumes and types of conflicts is usually followed.

Figure 3. Procedure for Basic Signal Timing Design

The number of conflicts increases exponentially as a function of the number of legs of intersection. It is therefore imperative to design new intersections with legs no more than four. At signalized intersections, control of traffic is done by separation in time, i.e., a number of movements are given right of way in terms of time allocated to them. Three types of conflict are present in an intersection, namely: diverging, converging, and crossing. As to severity, crossing is the most problematic type dictating almost the number of phases. Simple rules can be developed to state what type of conflict arises between two movements i and j:

IF origin_i = origin_j **AND** exit_i exit_j **THEN** conflict is diverging. **IF** origin_i origin_j **AND** exit_i = exit_j **THEN** conflict is converging.

A rule to determine whether two movements cross its other's path can be set by evaluating the three angles shown in Figure 4.

Figure 4. Crossing Conflict Determination

All angles(a, b, q) are reckoned from tail of *i* and are measured counterclockwise.

IF (b > q) **AND** (q > a) **THEN** conflict is crossing.

The test may have to be performed twice by swapping movements i and j. The conflict type is not crossing if either test does not satisfy the above condition.

2.2 Critical Movement Analysis

The determination of cycle time and green times needed by the different movements follows the critical movement analysis method. This is the same method used by Akcelik in his SIDRA program and by the US Highway Capacity Manual for the design and analysis of signalized intersections.

The illustrations below show the three typical 'stages' for vehicles at a T-intersection (Figure 5a) and the corresponding critical movement diagram (Figure 5b). The term 'phases' is not used because of the overlapping movements (defined as movements present in more than one stage), namely: 1, 4, and 5. The cycle time and green times may be dictated by the time requirements of any of the following sets: [1, 6], [3, 5], [2, 3, 6], or [2, 4]. Each set consists of movements that form a complete cycle. The set that gives the highest Y-value forms the critical movements. In other words:

 $Y_{cr} = max (Y_1, ..., Y_n)$ where n is total number of possible sets.

Figure 5a. Three Stages for a T- Intersection

Figure 5b. Critical Movement Diagram

2.3 Cycle Time

The cycle time is determined by using Webster's formula, $C = (1.5L + 5)/(1-Y_{cr})$. It was obtained by considering vehicular delay as the objective function or measure of performance. A number of cycle formulas have been introduced but they follow the basic form of the equation by Webster.

3. Sample Run

The features and/or performance of the program will be demonstrated by an example using a T-intersection. The characteristics of the intersection may be gleaned from the data inputs that follow:

Summary of flow data may be viewed by choosing item #3 in the main menu. Default values for Intergreen(IG), Saturation flow rates (Sat_Flow), and Practical degree of congestion (Xp) are added. These values can be easily modified using the procedure below.

Move	IG	Volume	Sat_Flow	Хр
1	5	750	1800	0.90
2	5	200	1800	0.90
3	5	450	1800	0.90
4	5	120	1800	0.90
5	5	350	1800	0.90
6	5	200	1800	0.90
Aenu for Ch	movemen anging D	t to be modifie ata for Moven	ed [1-6]: 1 nent No. 1 Surrent Value	
Aenu for Ch tem	movemen anging D	t to be modific ata for Moven (ed [1-6]: 1 nent No. 1 Current Value	
Menu for Ch tem	movemen anging D	t to be modific ata for Moven (ed [1-6]: 1 nent No. 1 Current Value	
Menu for Ch tem	movemen anging D	t to be modifie ata for Moven (ed [1-6]: 1 nent No. 1 Current Value	750
Menu for Ch tem Volume Saturation	novemen anging D flow rate	t to be modifie ata for Moven (ed [1-6]: 1 nent No. 1 Current Value	750 1800
Menu for Ch tem Volume Saturation Intergreer Staturation	novemen anging D flow rate	t to be modifie ata for Moven (ed [1-6]: 1 nent No. 1 Current Value 5 2	750 1800
Menu for Ch tem Volume Saturation 3. Intergreen I. Starting lo	movemen anging D flow rate 1 ss	t to be modifie ata for Moven C	ed [1-6]: 1 nent No. 1 Current Value 5 2 3	750 1800
Arenu for Ch tem . Volume . Saturation . Intergreer . Starting lo . End gain . Practical d	novemen anging D flow rate ss egree of s	t to be modifie ata for Moven C saturation	ed [1-6]: 1 nent No. 1 Current Value 5 2 3	750 1800 0.90
Aenu for Ch tem . Volume . Saturation . Intergreer . Starting lo . End gain . Practical d	movemen anging D flow rate ss egree of s	t to be modifie ata for Moven C saturation	ed [1-6]: 1 nent No. 1 Current Value 5 2 3	750 1800 0.90
lenu for Ch em Volume Saturation Intergreer Starting lo End gain Practical d Modify oth	novemen anging D flow rate ss egree of s eer mover	t to be modifie ata for Moven C saturation nent	ed [1-6]: 1 nent No. 1 Current Value 5 2 3	750 1800 0.90

Sample Output(in text format):

fovement Enti		ntry	E	xit	Direction								
1 E			W	through									
2 E S		left											
3 W E		through											
4	4 W S		right										
5 S			W	left									
6			S	E right									
onfli	lct :	Tabl	e:(S of	 umma mov	rizes ement	the different	coni	Elict	s bet	ween	pai	r	
onfli	lct :	Tabl	e:(S of	 umma mov	rizes ement	the different	coni	Elict	s bet	ween	pai	r	
onfli	lct ! 1	Tabl	e:(S of 3	 mov 4	rizes ement 5	the different	coni	flict	s bet	ween	pai	r	
onfli 	lct ! 1	 Fabl 2	e:(S of 3	 mov 4	rizes ement 5	the different	coni	flict	s bet	ween	pai	r	
onfli 1 2	lct ' 1 di	Tabl	e:(<i>S</i> of 3	 mov 4	rizes ement 5	the different	coni	flict	s bet	ween	pai	r	
onfli 1 2 3	di no	Table 2 cr	e:(S of 3	 mov 4	rizes ement 5	the different	coni	flict	s bet	ween	pai	r	
onfli 1 2 3 4	lct 1 1 di no no	Tablo 2 cr co	e:(<i>S</i> of 3 di	 mov 4	rizes ement 5	the different	coni	flict	s bet	ween	pai	r	
onfli 1 2 3 4 5	di no co	rabl 2 cr co cr	e:(S of 3 di cr	umma mov 4 no	rizes ement 5	the different	coni	flict	s bet	ween	pai	r	
onfli 1 2 3 4 5 6	di no no co no	rabl 2 cr co cr no	e:(S of 3 di cr co	umma mov 4 no no	rizes ement 5 di	the different	coni	flict	s bet	ween	pai	r	
onfli 1 2 3 4 5 6 	di no no co no	Tabl 2 cr co cr no	e:(S of 3 di cr co	umma mov 4 no no	rizes ement 5 di	the different s)	coni	flict	s bet	ween	pai	r	con fi i c

(Different movements are assigned to phases; the number of phases is determined based on traffic volume and types of conflict)

Reduced no. of Phases/Stages: (with initial movements)

Phase 1: 2 Phase 2: 5 Phase 3: 1 3

Rearranged phases/stages: (phases are arranged in logical manner)

Phase 1: 1 3 Phase 2: 2 Phase 3: 5

Final phases/stages: (other movements are added) Phase 1: 1 3 4 Phase 2: 1 2 6 Phase 3: 4 5 6

Flow Data:

Move	SP	TP	IG	Volume	Sat_Flow	L	Xp
1	1	3	5	750	1800	4	0.90
2	2	3	5	200	1800	4	0.90
3	1	2	5	570	1800	4	0.90
4	3	2	-			-	
5	3	1	5	350	1800	4	0.90
6	2	1	5	200	1800	4	0.90

Calculations:

Move	y_value	u_value
1 2	0.42 0.11	0.46 0.12
3 4 5	0.32	0.35
6 	0.11	0.12

The critical movements are: 2 3 5 Available Lanes per Approach:										
App.	pp. No. Approach				. of la	anes				
1	1 E				2					
2 3 	S W				2 1					
Lane	Alloc	ation:								
Ap	proach	 1 TL	RL	LL						
1	(E)		0	1						
2 3	(S) (W)	0 1	1 0	1 0						
 TL	- thr	ough lane	es; RL	 - rigl	ht turi	n lanes;	; LL -	left	turn 3	lanes
Opti: Prac	mum cy tical	cle time: cycle tim	: 60.8 ne: 38	8 sec. .88 sec	с.					
Chos Ave. Degr	en cyc Delay ee of	le time: 7: 20.48 s Saturatio	50.0 sec./v	sec. eh. 0.82						

4. References

Akcelik, R., Traffic Signal Design, Australian Road Research Board Special Report/ SIDRA User's Manual.

Buchanan, B.G., Shortliffe, E.H., 'Rule-Based Expert Systems', Addison-Wesley, 1984.

Hayes-Roth, F., Waterman, D.A., Lenat, D.B., 'Building Expert Systems', Addison-Wesley, 1984.

Negoita, C.V., Expert Systems and Fuzzy Systems, Benjamin/Cummings, 1985.

Special Report 209:Highway Capacity Manual. TRB, National Research Council, Washington, D.C., 1985.

Webster, F.V., and Cobbe, B.M. Traffic Signals. Technical Paper 56. U.K. TRRL Report, Crowthorne, England, 1966.