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Abstract: This article describes a new and novel approach to model dynamic simulation of 
mobile traffic agents such as pedestrians and cars on a simple network graph. The 
modeling approach is based on route choice self-organization of multi agents. In contrast 
to the traditional method of traffic assignment that assigns probability on each route based 
on a generalized travel cost, our model considers route probability as direct output of the 
simulation rather than an input to the network. The self-organizing route choice happens as 
a dynamic feedback loop that optimizes the product between global and local information. 
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1. INTRODUCTION 
 
Multi agent traffic simulation is an abstract representation of real world traffic agents into 
mathematical equation or computer program that might give a new paradigm to evaluate 
the outcome of various design, control and policy scenarios. Simulation is a great tool as 
virtual laboratory to experiment with various types of facilities and behavioral rules and 
what-if scenarios.  
 
A mobile traffic agent or just agent in short is defined as an intelligent autonomous discrete 
character (such as pedestrians, goods, vehicles and mix traffic) that moves on a network 
graph, lattice grid, continuous space or hybrid environment based on local rules from an 
origin point to a destination point. The term autonomous indicates that the agents have 
their own minimal intelligence to sense, to decide, and to react or to adapt independently 
based on a set of rules and agent’s observation of the environment. Each agent has it own 
properties such as position and speed and many other parameters that affect agent’s 
behaviors.  
 
Agents have limited ability to dynamically sense or gain information from the 
environment. Through the sensing ability, agents know the existence of other agents and 
the existence of obstructions and facility such as roadway for vehicle and stair or elevator 
for pedestrian.  
 
Agent also has minimum intelligence to decide which way to go. There is no requirement 
for user intervention on agents’ decision. The decision is based on agent’s observation of 



the current situation and simple local rules. 
 
The agents have the ability to make decisions which lead them to adapt to their 
environment. The agents’ behavior is affected by the current condition of the environment. 
If the environment is dynamic such as the possibility to go from red to green light of traffic 
signals or opening and closing of gates, the agents’ decision would be realized as their 
adaptive ability. In terms of closing doors for pedestrian agents, the agents may even 
attempt to find another path. 
 
The notion of local rules that is used to decide the path comes from two types of 
information.  The first information is global information of navigation that is transformed 
into local information through a function that I call as Sink propagation Values (SPV).   
The global information provides full information regarding the environment while the local 
information is only available within the vicinity of agent’s neighborhood (e.g. sight 
distance). The second information is local information of interaction with other agents. 
This information measures the density or how many other agents surround the agent. Both 
local and global information are stored inside the mind of each agent and updated every 
time step of the simulation. 
 
Without losing generality, the illustration in this paper mainly use pedestrian agents on a 
network graph as examples to demonstrate simulation of mobile traffic agents. Pedestrian 
movement has a much higher degree of freedom than vehicular movement so it makes 
vehicular traffic a subset of pedestrian traffic in the simulation. For example, pedestrian is 
able to turn direction almost immediately and the environment that pedestrians move is 3 
dimensional space (e.g. using elevator & escalator). Therefore, vehicular movement can be 
viewed as a special case of pedestrian movement model given its many constraints (such as 
steering wheel and inability to climb surfaces such as stairs). With some modifications, the 
same model could also be applied for any type of agents from pedestrians, goods, vehicles 
and mixed traffic.  
 
The representation other than network graph has been published elsewhere. Most 
pedestrian simulation models were done in continuous space (see Helbing and Molnár 
(1995), Teknomo and Gerilla (2005) and Teknomo (2006)) or lattice grid (see for Blue and 
Adler (2000), Schadschneider (2001), Kretz and Schreckenberg (2006), Teknomo and 
Millonig (2007)). Only a few models have been published in network graph (e.g. Lovas 
(1994) that uses queuing network model). The approach in this paper is somewhat different 
from Lovas (1994) in that it gives much greater flexibility and intelligence to the agents to 
move in a dynamic environment, more autonomous based on local rules.  
 
The significance of modeling mobile traffic agents using network graph is two folds. First, 
compared to ordinary traffic simulation or traffic software, multi agent simulation provide 
more realistic behavior as we could track the trajectory movement of each agent. Second, 
compared to dynamic traffic assignment (DTA) model, this model is generally much faster 
to compute due to many simplifications.  
 
Furthermore, the main contribution of this paper is to reverse the process of traditional 
method of traffic assignment that assigns probability on each route based on a generalized 
travel cost. The model in this paper considers route probability as direct output of the route 
choice self-organization (RCSO) rather than an input to the network. 



 
 
2. TRADITIONAL TRAFFIC ASSIGNMENT 
 
To be able to appreciate the benefit of route choice self-organization (RCSO), this section 
summarizes traditional method of traffic assignment as described in Kachroo  and  Ozbay 
(1999) and Ortuzar and Willumsen (2001) . 
 
The basic methods of loading in traditional traffic assignment is either all or nothing or 
multipath. All or nothing is to assign all trips of a designated origin-destination traffic flow 
(or OD flow in short) to the shortest path. In this sense, the probability of a route r is given 
by 
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Though it is not a realistic load, all or nothing is heavily used in many algorithms and 
commercial software due to its simplicity and it is fast to compute. 
 
The other common loading type of traffic assignment is multipath assignment or stochastic 
proportional method where all trips of a designated OD flow is assigned to all possible 
routes with proportion according to the impedance. The probability of a route r is given by 
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The parameter λ  is chosen such that longer route will get smaller probability to be 
selected. Multipath assignment has a major drawback that coding strategy will effect 
allocation of flows. It tends to allocate more traffic to dense sections of network with short 
links compared to sparse sections with longer links. 
 
In both methods of all or nothing and multipath assignment, the three step computation is 
performed for each OD pair which are to get all possible routes and the costs, to compute 
the probability of each possible route and to assign OD flow according to the probability 
along the route. Finally, the flow of each link is obtained by simple summation of all link 
flows. 
 
The basic methods of traffic assignment above did not consider the existence of physical 
road width that affects the capacity of the links. To be more realistic, cost flow functions 
are considered for each link to reflect on link capacity.  Incorporating the cost flow 
function, the basic methods of traffic assignment become capacity restraint traffic 
assignment which basically finds the equilibrium condition either in terms of user 
equilibrium or social equilibrium. Under user equilibrium conditions, the traffic flow shall 
be arranged in congested networks such that all routes between any OD pair have equal 
and minimum cost while all unused routes have greater or equal costs. Under social 
equilibrium, the traffic flow should be arranged in congested networks in such a way that 
the average (or total) cost is minimized.  
 



The computation is iterative such that the travel cost of one loading is utilized for the next 
iteration with some small percentage of traffic flow at the beginning using all or nothing. 
There are many algorithms to solve such iteration into convergence and reasonable speed 
with few notable ones such as Method Successive Average (MSA) and Frank-Wolfe 
Algorithm. 
 
There is something in common in all above traditional method of traffic assignment as 
shown in figure 1. In all assignment methods, the probability of each route is computed 
based on a generalized travel cost and the assigned flow. The generalized travel cost is also 
computed from the assigned flow. Thus, first we need to assign the OD flow then we 
compute the generalized travel cost. In turn, we compute route choice probability and use 
that route choice probability to assign OD flow. The iterative procedure is used to converge 
the assigned flow. 

 
Figure 1. Iterative procedure of traditional traffic assignment 

 
 
3. ROUTE CHOICE SELF ORGANIZATION 
 
The backbone of the proposed method in this paper is based on route choice self-
organization (RCSO) as described in more detail in Teknomo et al (2008). RCSO is a 
phenomenon that agents autonomously and endogenously, during the simulation, decide to 
change their plans with respect to route choice. In reality RCSO is observed in crowded 
scenarios, where people tend to deviate from the usual chosen shortest path in an attempt 
to avoid congestions. 
 
In contrast to the traditional traffic assignment, the proposed multi agent model does not 
have both explicit models for route choice or traffic assignment. Figure 2 shows the 
procedure of the proposed multi agent model which can be contrasted to Figure 1. In the 
proposed model, the agent is moving in the network naturally, based on the product of 
local rules of permission, interaction and navigation. Instead of using logical iteration over 
the flow which has no physical interpretation, the multi agent model ‘iterates’ based on the 
dynamics of the simulation. In this sense, the iteration is performed by incorporating time 
as a variable. The route choice and traffic assignment in this case, is an emergent 
phenomenon from the distributive natural movement of the agents that run in parallel over 
time. The natural movement of the agents creates spatial dispersion over the network and 
the spatial dispersion creates queue in some places on the network. As we give flexibility 
to the agent to select either to go with the queue or to select other paths, the agents which 
have not been trapped in the queue would sense the queue situation ahead and select 
dynamically other longer routes to destination or to join the queue. Over time, this kind of 
individual decisions will fill up the network and produces the loading of traffic assignment. 



The route choice of each agent, flow on each link as well as travel distance and travel time 
can be viewed back as an output of the computation rather than as input to the model. 
 

 
 

Figure 2. Straightforward procedure of RCSO 
 
The individual route choice to go away from the shortest path happens when the shortest 
paths are perceived by the individual agents as congested or overcrowded. The notion of 
congestion here is subjectively decided by the individual agent. What one agent considers 
as a free flow might be considered as normal traffic by the other agents and a situation 
where a link is considered as congested might be thought of as overcrowded by other 
agents.  
 
When the number of agents is relatively low, all the agents will move freely through the 
shortest path similar to the road traffic situation during early morning. If we increase the 
number of agents by the dynamic OD flow, the interaction among agents start to play 
around on certain links of the network with reduction of travel time but the individual 
route choice remains on the shortest path. As the OD flow increases to morning peak, some 
links would be considered as congested by some of the individual agents and they start to 
select alternatives routes. 
  
It is the selection of alternatives route which is modeled in this paper as self-organization 
phenomena to find optimum ways to go to destination. This phenomenon is an emergence 
behavior (unsupervised-learning) in which the arrangement arises from the interaction of 
agents rather than as the result of centralized rule in the model.  
 
 
4. MODELING MULTIAGENT MOVEMENT 
 
This section describes in mathematical detail the proposed model.  
 
Agent’s movement is directed from the origin vertex to the destination vertex, i.e. only 
one-directional movement is considered here, although also multi-directional movement 
could be included with little extra complexity. When reaching a vertex they decide which 
edge to enter next. This decision is done autonomously based on a set of rules using the 
agent’s observation of the local environment. In our model, the agent’s sensing ability is 
limited to only observe the edges’ density and edges’ space capacity adjacent to the vertex 
they are currently located in. Additionally the agents have complete information of the 
distance to the exit at each vertex.  
 
The environment where the pedestrians live is a space aggregated into a directed network 
graph. The three-dimensional network graph is a non-planar multi-graph as it may contain 
multiple edges. There is no limitation on the number of agents that can be accommodated 



within a vertex. Each edge in the graph represents real space such as road midblock, 
rooms, doors, or facilities such as stairs, ramp, elevator, and escalator, etc. Therefore, two 
main properties of an edge are an equivalent width W  and an equivalent length L . I called 
these properties as equivalent width and equivalent length instead of simply width and 
length because they can also be used to represent other impedance factors rather than mere 
distance. For example, equivalent length can represent dynamic average server time in 
queuing network. When the edge represents real space of a room, equivalent width and 
equivalent length can be shorten as width and length of the room. 
 
The notion of capacity is as a direct measurement of physical maximum space against the 
user’s perception of the space rather than logical maximum flow. Space capacity of a link 
i j
uur

 is defined as a product of equivalent length i j
uurl , equivalent width i jωuur and agents’ 

perception on maximum density max
aρ . 

 
max
ai j i j i jc ω ρ=uur uur uurl  ( 3) 

 
We define space capacity based on the product of actual space and perception of the 
agents. When the agent could bear to stay in a crowded situation, the perception of 
maximum density would be higher than the agents who cannot stand overcrowded 
situation. Lower agents’ perception on maximum density tends to make the agent to select 
space with fewer pedestrians. 
 
The agents’ movement must be started and ended somewhere in the node of the network 
graph. A source is a set of origin vertices where the agents start their journey. A sink is a 
set of destination vertices where agents stop for some activity or final destinations of the 
agents.  
 
Decision to move from one space to the other space is assumed only take place in vertices. 
As the agents only use local information, we need to identify that the local information is 
the information from the current vertex where the agent stay to decide and neighbors of the 
current vertex. The agent’s decision to enter the next edge is guided by three principles 
which can be called ‘permission’, ‘interaction’ and ‘navigation’.  
 
Permission is represented by the direction of the link on the network as well as possibility 
of dynamic open and close node to model green and red traffic signal or open and close 
gates for pedestrian. Permission value is a binary quantity to indicate whether an agent a  
is allowed to enter certain vertex v at a specified discrete time t . As we model the 
environment with network graph, the permission is indicated by the direction of the arrow 
in each edge. If two vertices are not joined by two way directional edges, the agent is not 
permitted to move directly between those two vertices. 
 
Interaction on the other hand takes the fact into account that agents attempt to avoid 
perceived crowded links. Within the model the interaction uses only local information 
represented by a generalized cost function of the observed density on the edges adjacent to 
the decision vertex where the agent currently is located. Interaction is represented by a 
function of edge density. If the edge density is high, the proportion of agents to go to that 
link is reduced. Suppose the agent position is in current vertex i  and let j  be the neighbor 



vertex (for self-loop, j i= ). And let in  be the total number of edges out of node i , i jρuur  is 

the current density of edge i j
uur

 and i jcuur  is the space capacity  of edge i j
uur

, then the 

interaction at edge i j
uur

 is measured as a proportion that an agent who is currently at vertex 
i  will enter edge i j

uur
. It can be noticed here that similar to the traditional transportation 

model that employ generalized cost function to adjust the parameters, the length of the 
edge is hidden as space capacity. 
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Linear relationship is a special case when 1α β= = . 
 
Navigation refers to a notion of distance to the destination point without taking other 
agents into account. Often navigation uses shortest path methods. With respect to 
navigation a concept called “sink propagation value” (SPV) is used. Here SPV is a 
function assigning a value to each vertex that is implementing a general notion of distance 
from the sink. I derive the name from the fact that the SPV of the vertices are propagating 
from the sink node into all other connected nodes. Using SPV it is possible to transfer the 
global information of distance to the sink into local information available at each vertex. 
Different SPV concepts can be obtained implicitly by using computational methods such as 
reinforcement-learning (i.e. Q-Learning), smoothing relaxation, Bellman flooding 
algorithm and the distance transform.  
 
Navigation is represented by a function of Sink Propagation Value (SPV), which is vertex 
value that guides the navigation of the agent. Instead of selecting the optimum value, we 
can also make the SPV biased toward slightly second or third-optimal values though a 
multiplication with a probability. Let iv  and  jv  be the sink propagation value of current 
vertex and neighbor vertex j  respectively, we can define normalized SPV difference at 
current vertex as follow 
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Then, the Navigation is defined as 
 

( )BetaCDF ; ,i iN z ϑ θ=  ( 6) 

 
When iz = 1, optimum (i.e. shortest path by the definition of SPV) vertex will be selected. 
Bias towards sub-optimum value is done through parameter setting between zero and one. 
 
Decision on which edge agent will move is only made at current vertex i . Selected edge 
i k
uur

 is given by 
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j
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Current speed tv  is adjusted based on current link density tρ  at int t=  and speed density 

relationship for every time step ( )t tv f ρ= . Let max
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agents’ perception of maximum density, then 
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Let *t  be the actual time when the agent goes out of the edge, computed as ceiling of 
simulation time such that the simulation time is higher than the pre-computed time to exit. 
The actual time to go out of the edge is given by 
 

( )*
outt t t t= ≥⎡ ⎤⎢ ⎥ ( 9) 

 
Thus the macroscopic pedestrian simulation model has six parameters to be calibrated 
which areφ  andϕ  for the interaction, ϑ  and θ  for navigation, ς and τ  for speed-density 
relationship. Note that the fundamental diagram is the input of the model (through speed-
density relationship) rather than the output.  
 
The individual RCSO happens due to balance between navigation and interaction. 
Navigation criterion makes the agent find shorter route while Interaction criterion tends to 
make the agent select a longer route by reducing the probability to go to higher density 
links. The RCSO emanates in relatively dense scenarios where the optimal route in terms 
of travel distance is abandoned by agents due to their preference to avoid crowded edges, 
i.e. in a sense the agents anticipate congestion and take the corresponding delays into 
account. This can be demonstrated using a comparative static analysis analyzing the choice 
between two alternative routes: At low levels of flow the navigation term will dominate the 
interaction term. Due to the navigation criterion to select the shorter route, edges which 
correspond to the shorter route will be filled first. Increasing the flow level, the density on 
the shorter route will increase making the interaction term more important. Consequently 
more agents will choose the longer route to avoid regions of high crowd density. Increasing 
the flow levels even higher up to a level where also the alternative route is congested the 
navigation again gains importance. This conforms to observations in real world scenarios. 



 
5. NUMERICAL EXAMPLE OF MACROSCOPIC MODEL 
 
This section illustrates the manual computation of RCSO. I give illustration of a simple 
network with 6 nodes as shown on the left of Figure 3. The distance is given on the link 
while the space capacity is one for all links.  The distance matrix is given as follow 
 

0 5 7 0 0 0
0 0 4 7 0 0
0 5 0 2 3 0
0 0 0 0 1 4
0 0 0 6 0 3
0 0 0 0 0 0
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The sink propagation value are computed and shown in the right of Figure 3. 
 

 
 Figure 3. Network example with distance (left) and SPV 

(right)  
 
For the sake of illustration, we simulate 100 pedestrian agents by varying only two main 
parameters. Maximum density is 5 pedestrians per square meter and maximum speed is 1.2 
m/s. Figure 4 shows some variation on the interaction parameters on the network. All other 
navigation parameters and parameter of speed-density relationship are set to default value 
of 1. The figure describe that the relationship of parameter set and flow pattern is not a 
one-to-one correspondence. In fact, it is not a function that maps a set of parameters to a 
set of flow pattern. A set of parameters will produce a set of flow pattern, but other set of 
parameters may also produce the same set of flow pattern. In other words, we can make 
various parameters set to obtain the same flow pattern. Parameter set is the necessary 
condition to obtain the flow pattern but it is not the sufficient condition. This results show 
that we cannot make flow pattern as a criteria of the objective function in parameter 
calibration. For example, the calibration cannot be done by fitting some flow count at 
certain edges such that the sum square error of the different dynamic flow count of all 
edges is minimized. This type of calibration could produce a set of parameters, which are 
not optimal. 
 
More varied route categories produces more flow to fill edges that are not in the shortest 
path. Filling the flow of edges can be done by producing more variation of routes. Also, 
notice that forcing all 100 pedestrian agents to use the shortest path (route 1-3-5-6) will not 
produce the minimum egress time. In fact, it has very high egress time that may happen in 



panic situation (512 seconds compare to optimum egress time of 132 seconds or compare 
normal situation of 262 seconds). This result highlighted the exact reverse to the common 
belief that shortest path yield to the minimum evacuation time. That common belief may be 
true if and only if only a minimum number of agents are present on the system. As the 
number of agents in the system increases, filling through the main routes may yield 
optimum system in terms of minimum egress time. 
 
Parameters Flow Pattern Route 

1φ = , 1ϕ =  
Egress Time = 262 
Route Category: 4 

  

5φ = , 1ϕ =  
Egress Time = 262 
Route Category: 2 

 
 

1φ = , 5ϕ =  
Egress Time = 255 
Route Category: 7 

   
5000φ = , 5000ϕ =  

Egress Time = 132 
Route Category: 4 

 
 

   
 Figure 4. Effect of varying parameters on Network 

example  
 
The dynamic node density of the 6 vertices is exhibited in figure 5. It shows that the source 
vertex density is going down over time and sink vertex is going up over time because no 
actual limit of density on the node. All other vertices in between do not have density higher 
than 5 pedestrian agents per square meter at the same time. 



 

 
 Figure 5. Dynamic node density of Network example  

 
 
6. CONCLUSIONS 
 
The route choice self-organization can be seen as a new and novel alternative to existing 
multi-agent dynamic traffic assignment models. The proposed model is much simpler than 
traditional traffic assignment model that it incorporates natural movement of agents to 
establish individual route choice. As the result, the model is able to handle dynamic traffic 
assignment based on route choice self-organization.  
 
The illustration example of pedestrian agents over the network graph indicates that non-
unique set of parameters would produce the same set of link flow pattern. Therefore, we 
cannot use flow pattern as criteria of objective function in parameter calibration. 
 
It was also found out that shortest distance path does not necessarily lead to minimum 
egress time which is useful for evacuation application. This finding is especially important 
in the present of panic crowds. It implies that evacuation route should be analyzed further 
as it is not necessarily the shortest distance as commonly believe by many people.   
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