Data Analytics for Research and Education (DARE)

Proj 2: Design and analysis of algorithms May T. Lim National Institute of Physics, UP Diliman

TSSP ITS Forum 25 October 2019

Proj 3: Stakeholders' concerns and performance indicators

Engineering MAPÚA

koj 1: Data hub (receiva organize, transmit)

DARE leverages strengths and linkages of implementing units

Proj 2: Analyze, model and predict

- Use data to build models
- Study interplay of behavior and system using microscopic traffic models
- Perform scalable modeling using mesoscopic traffic models
- Create tools when data is not available

Computing platform

Reconfigurable cluster for academic research

Located at NIP, UP Diliman cloud@nip - 24/7/365 operation

DARE P2 Research Team @ NIP, UP Diliman

Project staff (5): M. Lim (PL) D. Dailisan A.C. Balingit L.J. Rubio I. Fenis

Complemented by undergraduate researchers

http://cxteam.liknayan.com

The Complex Systems Team (CXTeam) is one of the research groups of the Instrumentation Physics Laboratory of the National Institute of Physics

- Use data to build models
- Study interplay of behavior and system using microscopic traffic models
- Perform scalable modelling using mesoscopic traffic models
- Create tools when data is not available

RESEARCH ARTICLE

Modeling the residential distribution of enrolled students to assess boundaryinduced disparities in public school access

Louie John M. Rubio¹, Damian N. Dailisan ¹, Maria Jeriesa P. Osorio², Clarissa C. David², May T. Lim ¹*

1 National Institute of Physics, University of the Philippines Diliman, Quezon City, Philippines, 2 College of Mass Communication, University of the Philippines Diliman, Quezon City, Philippines

Evaluate access using school location and enrolment

Check for updates

G OPEN ACCESS

Citation: Rubio LJM, Dailisan DN, Osorio MJP, David CC, Lim MT (2019) Modeling the residential distribution of enrolled students to assess boundary-induced disparities in public school access. PLoS ONE 14(10): e0222766. https://doi. org/10.1371/journal.pone.0222766

Abstract

Given school enrollments but in the absence of a student residence census, we present a gravity-like model to infer the residential distribution of enrolled students across various administrative units. Multi-scale analysis of the effects of aggregation across different administrative levels allows for the identification of administrative units with sub-optimally located schools and highlights the challenges in allocating resources. Using this method, we verify that the current scheme of free cross-enrollment across administrative boundaries is needed in achieving universal education in the Philippines.

Perform origin-destination inference

The O-D inference scheme **can** be extended to establishments with available occupancy data.

Dailisan, D. N., Rubio, L. J., Osorio, M. J., David, C., & Lim, M. (2018). Degree distributions of Origin-Destination matrices generated from school and barangay population data. *Proceedings of the Samahang Pisika ng Pilipinas* Rubio, L. J. M., Dailisan, D. N., Osorio, M. J. P., David, C. C., & Lim, M. T. (2019). Modeling the residential distribution of enrolled students to assess boundary-induced disparities in public school access. *PLoS ONE*

- Use data to build models
- Study interplay of behavior and system using microscopic traffic models
- Perform scalable modelling using mesoscopic traffic models
- Create tools when data is not available

previous work

Physica A 457 (2016) 138-147

Agent-based modeling of lane discipline in heterogeneous traffic

Damian N. Dailisan, May T. Lim*

National Institute of Physics, University of the Philippines Diliman, 1101 Quezon City, Philippines

HIGHLIGHTS

- A modified Nagel-Schreckenberg model for heterogeneous traffic is proposed.
- Phase transition, from free flow to congested flow, depends on vehicle length.
- Lane change can benefit narrow vehicles, and is undesirable for wide vehicles.
- Lane discipline breakdown may improve throughput at the cost of safety.
- A simple collision index is proposed.

Why are there so many motorcycles? Why do some drivers repeatedly change lanes?

Virtual lanes can **alleviate traffic jams.**

D. N. Dailisan and M. T. Lim. Agent-based modeling of lane discipline in heterogeneous traffic. Physica A (2016) DOI: 10.1016/j.physa.2016.03.104

Physica A 521 (2019) 715-723

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Damian N. Dailisan, May T. Lim*

National Institute of Physics, University of the Philippines Diliman, 1101 Quezon City, Philippines

HIGHLIGHTS

- A modified NaSch traffic model is proposed with the addition of lane changing.
- The fraction of vehicles that change lanes move faster than those that do not.
- Increasing the fraction of lane changers has diminishing returns in the speed difference of vehicles.
- Phase transitions due to the value of slowdown probability are coupled with density.
- Slowdown transition is different from the density phase transition.

Bus-Pedestrian traffic model

New fundamental diagram adapted to the Philippine context

Dailisan, D. N., & Lim, M. T. (2019). Jamming transitions in a mixed traffic cellular automata model. *Proceedings of the Samahang Pisika Ng Pilipinas*, (June), 2–5.

Bus-Pedestrian traffic model

New fundamental diagram adapted to the Philippine context Crossover transition points depend on arrival rates and density

Dailisan, D. N., & Lim, M. T. (2019). Jamming transitions in a mixed traffic cellular automata model. Proceedings of the Samahang Pisika Ng Pilipinas, (June), 2–5.

U-turn models

- 1. Dominant presence of turning cars over non-turning cars cause build-up and cascade of clogging to neighboring lanes
- 2. Clogging abruptly occurs at a U-turning cars threshold

Fenis, I. M., Dailisan, D. N., & Lim, M. T. (2019). Interplay of behavior and traffic dynamics in paired U-turn slots. Proceedings of the Samahang Pisika Ng Pilipinas.

Open Traffic Models (OTM)

- OTM is developed by Gabriel Gomes (UC Berkeley)
- OTM is a traffic simulation platform that implements models and control algorithms as Java plugins. Three basic models are provided: the cell-transmission model, the two-queue (mesoscopic) model, and Newell's car-following model.
- **otm-tools-python.** Python interface developed by Adrian Chester Balingit and Damian Dailisan (DARE Project 2) to expand the usage of OTM to Python programmers.

Create open source tools

Metro Manila network

- OSM [filtered: main roads] 89,432 nodes 240,023 edges 25.25 km by 49.01 km
- Static routing algorithm exercise

- Use data to build models
- Study interplay of behavior and system using microscopic traffic models
- Perform scalable modeling using mesoscopic traffic models
- Create tools when data is not available

Traffic control

Balingit ACM, Dailisan DN and Lim MT (2019). Mesoscopic simulation of road networks with time biasing of signalized intersections. *37th Congress, Samahang Pisika ng Pilipinas*. Tagbilaran City, Bohol

Eventually get to Manila conditions

- Use data to build models
- Study interplay of behavior and system using microscopic traffic models
- Perform scalable modeling using mesoscopic traffic models
- Create tools when data is not available

data@sidewalks

R	OUF	Institute eaching E	of Chemi Building	stry		в		Se	i i	Positio
No. of Lot			18/1		N.P.	4000	IHO	P 🔿 Toysi	UB	enviro
					1000	0			-	
		1	14							
M	1	E						A	13	
	5	J?				Merkado	Super	markiet	1	
200	SPE	D	0	2	-ă		1			
	and the		100		a					
in the	C.T.F.	P. Carci	a Ave				2	unan	£	
a Ave		Mea	asure distar	nce	and all			+allo		
		Clic	k on the ma	ap to add to	your pati	n 61)	EA			
Imagery ©	2017 CNES	Airbus Die	aitalGlobe, M	ap data @201	7.Google	Philippines	3D Earth	Santa Mar	ria della	
	3:23		3:25		3:28		3:32		3:36	
9/15/17, 3:2	3 PM	9/15/17, 3	25 PM	9/15/17, 3:2	28 PM	9/15/17, 3:3	2 PM	9/15/17, 3:3	36 PM	
% rH	65.1	% rH	73.1	% rH	63.6	% rH	60.2	% rH	60.0	
deg C	25	deg C	30	deg C	32	deg C	33	deg C	32	
noar Heat Index	25	mbar Heat Index	35	mbar Heat Index	38	mbar Heat Index	40	mbar Heat Index	37	
To are in rais A		near mac/		neurinaex	00	THOUSE THOUSE		The are that a way way way way way a way way a way way		

Extreme Caution

Danger

Position, health, environment tracking

Effort Watch	3:06							
9/15/17, 3:06 рм								
Steps/sec	2							
Sec/meter	0.7							
Effort (live)	89							
Effort (hour)	25							
Past hr steps	1846							
Distance, m	1369							

Gauging the difficulty of moving around

Extreme Caution

Proof-of-concept work funded by DOST- NAST

Figure 2: Raw data for acceleration, ambient temperature, and relative humidity obtained from a sample commute. Change of commute mode reflects in the sudden changes measured.

The "commuter experience"

L. Rizada, A.C. Balingit, M. Lim. Feasibility of a time-resolved index of commuter comfort. Proceedings of the Samahang Pisika ng Pilipinas 36th International Physics Conference. 6–9 June 2018 SPP-2018-3D-02-3

Figure 3: Comfort scores obtained from passing the measurements to the algorithm. The symbols above each plot label the type of activity within the commute: "I"-idle, "W"-walk, "J"-jeepney, and "L"-LRT 2. The blue circle and yellow circle correspond to an air conditioned setting and a non-air conditioned setting, respectively.

The "commuter experience"

L. Rizada, A.C. Balingit, M. Lim. Feasibility of a time-resolved index of commuter comfort. Proceedings of the Samahang Pisika ng Pilipinas 36th International Physics Conference. 6–9 June 2018 SPP-2018-3D-02-3

Moving forward: Edge inference (privacy-respecting algorithms)

VS

Moving data processing algorithms to the edge addresses privacy concerns — detect, process, and send only **minimal info**

Education / Extension

Good data vs. bad data: Is this dataset useful? A mini-workshop on transport data exploration & visualization using Python

Speakers & Facilitators: M. Lim, A.C. Balingit, D. Dailisan, L.J. Rubio, I. Fenis National Institute of Physics, UP Diliman

DoTr Workshop

Data Visualization

Damian Dailisan DOTr workshop, March 21, 2019

- Use data to build models
- Study interplay of behavior and system using microscopic traffic models
- Perform scalable modeling using mesoscopic traffic models
- Create tools when data is not available

Data Analytics for Research and Education (DARE)

Proj 2: Design and analysis of algorithms May T. Lim National Institute of Physics, UP Diliman

Email: <u>may@nip.upd.edu.ph</u> Web: <u>http://cxteam.liknayan.com</u>