

Hardware Accelerated Vehicle Detection Using Computer Vision for a Dynamic Traffic System

Joint work with Patrick Celon, Timothy Chua, Paul Ilaga, and Jethro Limjoco

Nestor Michael C. Tiglao, PhD

Objectives

• To develop and implement a **dynamic** closed-loop traffic management system covering two intersections • Measure the **throughput of the** implemented system and compare it against the throughput of a static scheduling system Implement the Computer Vision learning algorithm on **RasPi** and **FPGA** for **benchmarking**

Computer Vision

Implement a hardwareaccelerated Computer Vision algorithm to detect vehicles in traffic

Computer Networks

+

A network based approach to communication between intersections

A demand-based green light allocation algorithm (ITLC)

Dynamic Traffic Control

Our System

Simulation Setup

SUMO is an open source, highly portable, microscopic and continuous traffic simulation package designed to handle large road networks. http://sumo.sourceforge.net/

Representation of the Complete System

Traffic Management Module

An in-game view of a virtual camera

Camera view rendered in Unity

Sliding Window Optimization

Hardware Approximation of HOG

Operation	Software Implementation	Hardware Implementation ^[1]
Gradient Magnitude	Root Mean Square	$max\left(a - (a >> 3) + (b >> 1), a\right)$
	$mag_{x,y} = \sqrt{dX_{x,y}^2 + dY_{x,y}^2}$	$a = \max(dx, dy), \ b = \min(dx, dy)$
Orientation Binning	Arctangent	
	$angle_{x,y} = atan\left(\frac{dY_{x,y}}{dX_{x,y}}\right)$	$dx \times \tan \theta_{\rm i} \le dy \le dx \times \tan \theta_{\rm i+1}$
Block Normalization	Inverse square root	
		$y_d \left(rac{3 \ - \ x \ {y_d}^2}{2} ight)$
	\sqrt{x}	$y_d = Decimal\{ (x_{_IEEE754} >> 1) - 0x5F3759DF \}$
	남부 그 없는데	영감 환격이 많이 한 것을 얻는 것을 받는 것이 봐. 이 것이 하는 것은 것이 같다.

[1] P. Y. Chen, C. C. Huang, C. Y. Lien and Y. H. Tsai, "An efficient hardware implementation of HOG feature extraction for human detection," in IEEE Transactions on Intelligent Transportation Systems 15.2, 2014, pp. 656-662.

Classification to Suppression

SVM

Non-Maximum Suppression

Intelligent Traffic Light Scheduling Algorithm

Reference: M. B. Younes and A. Boukerche, "An intelligent traffic light scheduling algorithm through vanets," in 39th Annual IEEE Conference on Local Computer Networks Workshops, pp. 637–642, Sept 2014.

Timeline of Signals on a Single Road Terminal Output

('rrrrrGGGGGGrrrrrrrrr',	1100.0,	3, 2	2)	('rrrrrGGGrrrrrrGGGrr', 1149.0, 2, 6)	('rrrrrrrGGGGGGrrrrr', 1207.0, 4, !	5)
('rrrrryyyyyrrrrrrrrr',	1112.0,	3, 2	2)	('rrrrryyyrrrrrryyyrr', 1161.0, 2, 6)	('rrrrrrrryyyyyrrrrr', 1222.0, 4, 5	5)
('rrrrGGrrrrrrrGGrrrr',	1115.0,	1, 5	5)	('rrrrGGrrrrrrGGrrrr', 1164.0, 1, 5)	('rrrrrrrrrrrGGGGG', 1225.0, 6,)	7)
('rrrryyrrrrrrryyrrr',	1124.0,	1, 5	5)	('rrrryyrrrrrryyrrrr', 1176.0, 1, 5)	('rrrrrrrrrrrryyyyy', 1231.0, 6,	7)
('rrrrrrrrrGGGGGrrrrr',	1127.0,	4, 5	5)	('rrrrrrrrGGGGGGrrrrr', 1179.0, 4, 5)	('GGGGGrrrrrrrrrrrr, 1234.0, 1, 0	0)
('rrrrrrrryyyyyrrrr',	1136.0,	4, 5	5)	('rrrrrrrryyyyyrrrrr', 1188.0, 4, 5)	('yyyyyrrrrrrrrrrr', 1240.0, 1, (0)
('rrrrrrrrrrrrGGGGG',	1139.0,	7, 6	5)	('rrrrrGGGGGGrrrrrrrrr', 1191.0, 3, 2)	('rrrrrGGGGGGrrrrrrrrr', 1243.0, 3, 7	2)
('rrrrrrrrrrrryyyyy',	1145.0,	7, 6	5)	('rrrrryyyyyrrrrrrrrr', 1203.0, 3, 2)	('rrrrryyyyyrrrrrrrrr', 1249.0, 3, 7	2)

Reference: P. S. Chakraborty, P. R. Sinha, and A. Tiwari, "Real time optimized traffic management algorithm for intelligent transportation systems," in 2015 IEEE International Conference on Computational Intelligence Communication Technology, pp. 744–749, Feb 2015.

Timeline of Signals on a Single Road Graphical Representation (3 green lights)

NOT TO SCALE

RasPi is slightly more robust than FPGA

			FPGA		RASPI			
Video Name	Description	Accuracy	F1-score	MCC	Accuracy	F1-score	MCC	
MVI_39031	Direct front	94.5%	0.97	0.946	96.8%	0.98	0.96	
MVI_39211	view, daytime, low occlusion	88.3%	0.84	0.84	95.3%	0.85	0.85	
MVI_39311		88.5%	0.802	0.795	91%	0.88	0.87	
MMDA_3017	EDSA - Aurora Intersection, high occlusion	68.7%	0.51	0.52	71.8%	0.59	0.60	
MMDA_3100	Roxas - EDSA Intersection, medium occlusion	80.5%	0.598	0.60	78.7%	0.62	0.62	
MMDA_4079	Roxas Boulevard - Quirino Avenue intersection, medium Occlusion	68.99%	0.656	0.65	64.4%	0.66	0.65	

Camera placement matters!

DETRAC Dataset^[1] 94% Accuracy Unusable MMDA Dataset 41% Accuracy

Reference: L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang and S. Lyu, "UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking", Arxiv.org, 2018. [Online]. Available: https://arxiv.org/abs/1511.04136. [Accessed: 23- May- 2018].

FPGA performs 13x faster than the RasPi

Video Name	Number of Pictures	FPGA Proc Time (sec)	RASPI Proc Time (sec)	Speed Up
MVI_39031	2568	0.26615258	3.6345863	13.65602469
MVI_39211	1703	0.18806675	2.362984754	12.56460667
MVI_39311	1583	0.16284416	2.243037446	13.77413501
MMDA_3017	13366	1.33831585	19.16865903	14.32297084
MMDA_3100	10502	1.05670986	15.10151064	14.29106627
MMDA_4079	11492	1.15280146	16.48849331	14.30297744

Traffic System Output Static vs Dynamic

Average Throughput Improvements

Average Throughput Improvements

	Intersection 1	Intersection 2
An Ideal System	11.63%	12.43%
Our System	13.29%	11.48%

Conclusion

- The dynamic scheduling system was able to adjust to heavy traffic and provide an increase in throughput in comparison to the static scheduling system.
- Furthermore, the FPGA was shown to provide a significant speedup in performing the HOG + SVM algorithm in comparison to the purely software implementation from OpenCV.

Future Work

- This system can be expanded to cover more than two intersections. Also, this system should be tested through real life deployment to increase system robustness on different scenarios.
- To further increase speed up, sliding window generation can also be implemented in the FPGA. Also, implementing partial reconfiguration on the FPGA would enable the FPGA to adapt to various lane orientations.