
Hardware Accelerated Vehicle Detection Using 

Computer Vision for a Dynamic Traffic System

Nestor Michael C. Tiglao, PhD

Joint work with Patrick Celon, Timothy 
Chua, Paul Ilaga, and Jethro Limjoco



Objectives

● To develop and implement a dynamic 

closed-loop traffic management 

system covering two intersections

● Measure the throughput of the 

implemented system and compare it

against the throughput of a static 

scheduling system

● Implement the Computer Vision 

learning algorithm on RasPi and FPGA

for benchmarking

10



Computer Networks

A network based approach 

to communication between 

intersections

Computer Vision

Implement a hardware-

accelerated Computer Vision 

algorithm to detect vehicles in 

traffic

Dynamic Traffic Control

A demand-based green light 

allocation algorithm (ITLC)

Our System

11



Simulation Setup

SUMO is an open source, highly portable, microscopic and continuous traffic 

simulation package designed to handle large road networks.

http://sumo.sourceforge.net/
12

http://sumo.sourceforge.net/


Representation of the Complete System

Traffic Management 

Module

Traffic Management 

Module

RASPI-Sink

Simulation

SUMO

TraCI

Unity

Cameras

Unity

13



Traffic Management Module

Virtual Camera “N”

Virtual Camera “E”

Virtual Camera “W”

Virtual Camera “S”

RASPI-Node

Zybo Zynq-7000 

FPGA

14



Interplay of the 
FPGA and the on-

board Zybo 
SoC/SBC

Zybo FPGA
Image Sampling/ 
Sliding Window 

Generation

Image Scaling/ 
Detection Window

HOG Feature 
Extraction

SVM Classification

Non-maximum 
Suppression

Vehicle Counting 
and Output

15



Interplay of the 
FPGA and the on-

board Zybo 
SoC/SBC

Zybo FPGA
Image Sampling/ 
Sliding Window 

Generation

Image Scaling/ 
Detection Window

HOG Feature 
Extraction

SVM Classification

Non-maximum 
Suppression

Vehicle Counting 
and Output

16



An in-game view of a virtual camera

Camera view rendered in Unity

17



Interplay of the 
FPGA and the on-

board Zybo 
SoC/SBC

Zybo FPGA
Image Sampling/ 
Sliding Window 

Generation

Image Scaling/ 
Detection Window

HOG Feature 
Extraction

SVM Classification

Non-maximum 
Suppression

Vehicle Counting 
and Output

18



Sliding Window Optimization

19



Interplay of the 
FPGA and the on-

board Zybo 
SoC/SBC

Zybo FPGA
Image Sampling/ 
Sliding Window 

Generation

Image Scaling/ 
Detection Window

HOG Feature 
Extraction

SVM Classification

Non-maximum 
Suppression

Vehicle Counting 
and Output

20



Hardware Approximation of HOG

Operation Software 
Implementation

Hardware Implementation[1]

Gradient 
Magnitude

Root Mean Square

Orientation 
Binning

Arctangent

Block 
Normalization

Inverse square root

21

[1] P. Y. Chen, C. C. Huang, C. Y. Lien and Y. H. Tsai, “An efficient hardware implementation of HOG feature extraction for 

human detection,” in IEEE Transactions on Intelligent Transportation Systems 15.2, 2014, pp. 656-662.



Interplay of the 
FPGA and the on-

board Zybo 
SoC/SBC

Zybo FPGA
Image Sampling/ 
Sliding Window 

Generation

Image Scaling/ 
Detection Window

HOG Feature 
Extraction

SVM Classification

Non-maximum 
Suppression

Vehicle Counting 
and Output

22



Classification to Suppression

SVM Non-Maximum Suppression

23



Interplay of the 
FPGA and the on-

board Zybo 
SoC/SBC

Zybo FPGA
Image Sampling/ 
Sliding Window 

Generation

Image Scaling/ 
Detection Window

HOG Feature 
Extraction

SVM Classification

Non-maximum 
Suppression

Vehicle Counting 
and Output

24



Intelligent Traffic Light Scheduling Algorithm

Reference: M. B. Younes and A. Boukerche, “An intelligent traffic light scheduling algorithm through vanets,” in 39th Annual IEEE Conference on Local 

Computer Networks Workshops, pp. 637– 642, Sept 2014.
25



Timeline of Signals on a Single Road
Terminal Output

Reference: P. S. Chakraborty, P. R. Sinha, and A. Tiwari, “Real time optimized traffic management algorithm for intelligent transportation systems,” in 2015 IEEE 

International Conference on Computational Intelligence Communication Technology, pp. 744–749, Feb 2015.
26



Timeline of Signals on a Single Road
Graphical Representation (3 green lights)

3s33s 108s 33s 3s 108s 33s

8s 3s 34s 12s 3s 55s 3s6s

Static

Dynamic

NOT TO SCALE

27



RasPi is slightly more robust than FPGA

FPGA RASPI

Video Name Description Accuracy F1-score MCC Accuracy F1-score MCC

MVI_39031
Direct front 

view, daytime, 
low occlusion

94.5% 0.97 0.946 96.8% 0.98 0.96

MVI_39211 88.3% 0.84 0.84 95.3% 0.85 0.85

MVI_39311 88.5% 0.802 0.795 91% 0.88 0.87

MMDA_3017 EDSA - Aurora 
Intersection, 

high occlusion

68.7% 0.51 0.52 71.8% 0.59 0.60

MMDA_3100 Roxas - EDSA 
Intersection, 

medium 
occlusion

80.5% 0.598 0.60 78.7% 0.62 0.62

MMDA_4079 Roxas 
Boulevard -

Quirino Avenue 
intersection, 

medium 
Occlusion

68.99% 0.656 0.65 64.4% 0.66 0.65

28



Camera placement matters!

DETRAC Dataset[1]

94% Accuracy

Unusable MMDA Dataset

41% Accuracy

29

Reference: L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang and S. Lyu, "UA-DETRAC: A New Benchmark and Protocol for Multi-Object 

Detection and Tracking", Arxiv.org, 2018. [Online]. Available: https://arxiv.org/abs/1511.04136. [Accessed: 23- May- 2018].



Video Name Number of Pictures FPGA

Proc Time (sec)

RASPI

Proc Time (sec)

Speed Up

MVI_39031 2568 0.26615258 3.6345863 13.65602469

MVI_39211 1703 0.18806675 2.362984754 12.56460667

MVI_39311 1583 0.16284416 2.243037446 13.77413501

MMDA_3017 13366 1.33831585 19.16865903 14.32297084

MMDA_3100 10502 1.05670986 15.10151064 14.29106627

MMDA_4079 11492 1.15280146 16.48849331 14.30297744

FPGA performs 13x faster than the RasPi

30



Traffic System Output
Static vs Dynamic

31



Average Throughput Improvements

32



Average Throughput Improvements

Intersection 1 Intersection 2

An Ideal System 11.63% 12.43%

Our System 13.29% 11.48%

33



● The dynamic scheduling system was able to adjust to heavy
traffic and provide an increase in throughput in comparison
to the static scheduling system.

● Furthermore, the FPGA was shown to provide a significant
speedup in performing the HOG + SVM algorithm in
comparison to the purely software implementation from
OpenCV.

34

Conclusion



● This system can be expanded to cover more than two
intersections. Also, this system should be tested through real
life deployment to increase system robustness on different
scenarios.

● To further increase speed up, sliding window generation can
also be implemented in the FPGA. Also, implementing partial
reconfiguration on the FPGA would enable the FPGA to adapt to
various lane orientations.

35

Future Work


