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Abstract: The steady growth of economic activities in the Philippines necessitates the need for 

efficient ports to accommodate the growing demand for trade. This study applies the Data 

Envelopment Analysis (DEA) to provide the efficiency scores of the nineteen base ports in the 

country using data from 2019. An output-oriented analysis approach was applied for the DEA 

constant return to scale model (DEA-CCR) and DEA variable return to scale model (DEA-

BCC) to compute the overall technical efficiency and pure technical efficiency of the ports. The 

findings show that the ports of Calapan, Tagbilaran, Cagayan de Oro, and Ozamiz demonstrated 

the best performance in both models. The ports of Lamao, Legazpi, and Masbate achieved pure 

technical efficiency but are classified as inefficient under DEA-CCR. The other ports were 

consistently classified as inefficient regardless of the model. The target outputs for the ports 

were also derived by projecting the efficiency scores of the inefficient DMUs into a hypothetical 

DMU operating in the established efficiency frontier. 
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1. INTRODUCTION 

 

Logistics play a critical role in the development of an archipelagic country like the Philippines. 

The extensive area of the bays and coastal and oceanic waters gives the maritime sector a vital 

role in the development and growth of the local economy. For centuries, the Philippine 

territorial waters are the primary medium for transporting goods in domestic and international 

trade and play a crucial role in inter-island connectivity. 

According to the Philippine Statistics Authority (PSA), almost 99.9 percent of domestic 

trade commodities were traded through water transportation (coastwise) and the remaining 0.1 

percent through air transportation (Philippine Statistics Authority, 2019). The Maritime 

Industry Authority (MARINA) reports that in 2011-2017, the number of domestic shipping 

passengers has increased from about 50 million to 72 million, or an average annual growth rate 

of 6.5%. In the same period, domestic cargo also increased by 5.5% per year, from 74.17 million 

tons in 2011 to 102.53 million tons in 2017 (Maritime Industry Authority, 2018). The total 

domestic cargo throughput served by the maritime industry in 2019 reached 104.43 million tons. 

On the other hand, inter-island shipping had also transported around 83.5 million passengers in 

2019 (Maritime Industry Authority, 2020). 
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The national government recognizes the need for efficient ports and continuously puts 

efforts into improving the maritime transportation network. One of the ten-year Maritime 

Industry Development Plan programs aims to improve the efficiencies of port facilities as part 

of the Philippine Nautical Highway Development. A particular desired outcome of this program 

is to increase the number of passengers, cargo volume, and the number of ship calls (Maritime 

Industry Authority, 2018). 

As the country’s population and economic activities continue to grow, port authorities are 

tasked with maintaining the flow of goods, improving the efficiency of the port, and making 

services more competitive to accommodate the growing demand for trade. Since ports are a 

vital link in the overall trading chain, port efficiency is an essential metric in assessing the 

international competitiveness and productivity of a nation (Tongzon, 1989; Hung et.al, 2010; 

Lirn and Guo, 2011; Kutin, et.al, 2017). Port managers need to constantly evaluate the 

operations and processes related to performance. The efficiency of a distribution center is an 

important metric in assessing the effectiveness of an island or region in bridging the gap 

between suppliers and consumers. 

A great number of studies have focused on measuring the efficiency of international ports. 

Most of the international studies concentrated on container ports and do not consider passenger 

data. However, as of this writing, studies on the efficiency of domestic ports in the Philippines 

have been rare. The measurement of efficiencies of domestic ports is scarce mainly because of 

the relatively small trading volumes as compared to the lucrative business done in the container 

ports. Furthermore, port data in the Philippines is not consolidated and requires significant 

effort in acquiring. Hence, this paper hopes to contribute to the literature on efficiency 

measurement and management of local ports and maritime transportation in the Philippines. 

The researchers also aim to address the research gap between international and domestic ports 

in the country. 

The objective of this study is to apply using a non-parametric technique called the Data 

Envelopment Analysis (DEA) in measuring and comparing the efficiencies of nineteen ports in 

the Philippines. DEA Constant Return to Scale (DEA-CCR) and DEA Variable Return to Scale 

(DEA-BCC) will be applied in this study. The efficiency scores of the ports will be calculated 

and presented using the DEAP software and DEA Solver LV8.  

This study is organized as follows: Section 2 is a review of related literature of studies 

that used DEA as a measure of the efficiency with variations in types of ports, data requirements, 

methodologies, and models; Section 3 outlines and defines the DEA CCR and BCC models 

used in the analysis; Section 4 describes the implemented methodology as well as the definition 

and the bases of the variables used as inputs and outputs; Section 5 provides the results and 

analyses for DEA-CCR and DEA-BCC applied to the nineteen ports; Finally, Section 6 

summarizes the outcomes, insights and concludes the results of this study.  

 

2. REVIEW OF RELATED LITERATURE 

 

In simple cases where production operations depend on a single input and output, managers can 

easily measure efficiency by taking the ratio of the output and input. However, ports utilize 

multiple inputs and cater to different types of services (e.g, passenger, dry cargo, liquid cargo, 

container, etc.). DEA can effectively assess ports' relative efficiency since it was designed for 

organizational units with multiple inputs and produce multiple measurable outputs. 

One of the pioneering studies in analyzing seaport efficiency using DEA efficiency was 

done in 1993. Twenty hypothetical seaports were measured using DEA-CCR, the standard DEA 

model, with three variables as inputs and four as outputs (Roll and Hayuth, 1993). The same 

process and model were then applied in a study examining 12 international ports and four 



 

 
 

Australian container ports in 1996 (Tongzon, 2001). According to the study, the DEA technique 

can be a significant alternative to classical econometric approaches to extracting efficiency 

scores from sample observations. Another study also used DEA-CCR, in investigating cross-

sectional data for the year 1998 to establish a relationship between ownership type and port 

efficiency of 31 container seaports (Valentine and Gray, 2001). 

DEA-BCC was performed in a study of 26 Spanish seaports that were then grouped into 

three based on their complexity (Martínez-Budría et al.,1999). In this study ports of high 

complexity presented higher comparative efficiency levels, being closer to the efficiency 

frontier as compared to the medium and low complexity ports. There are also studies that 

applied both the DEA-CCR and DEA-BCC models. The efficiency of six seaports from Greece 

and Portugal was estimated using both models. The researchers were able to conclude that five 

seaports were efficient except for one, which is the port of Thessaloniki (Barros and 

Athanassiou, 2004). In addition, sixty-nine container terminal ports with annual throughput of 

10,000 TEUs in Europe were studied using both DEA models (Cullinane et al., 2004). The 

general conclusion from this study is that the efficiency of different container ports can fluctuate 

over time to different extents. Applying the models in the Asian region, Munisamy and Singh 

(2011) calculated the technical efficiencies of 69 major container ports and was able to generate 

efficiency ranking. The study was able to show that the overall technical inefficiency in Asian 

container ports is due to pure technical efficiency rather than scale efficiency. 

More recent studies applied new variations from the standard DEA. The DEA additive 

models were used alongside the DEA CCR to examine the technical efficiencies of ports in 

India from 1993 to 2011 (Rajasekar and Deo., 2014). It was concluded that port size is not a 

related factor for port efficiency. The difference between input and output orientation were also 

examined in a different study using both DEA-CCR and DEA-BCC. The results from this states 

that there is no difference in efficiency identification of the decision-making units (Rajasekar 

and Deo, 2014). The standard DEA model was also used in the analysis of nine Saudi Arabian 

seaports and their comparison with Jazan port (Esmail, 2016). A comparison was also done in 

2018, wherein the efficiency scores of seven Tunisian ports were computed using DEA-CCR, 

DEA-BCC, and another non-parametric method, the Stochastic Frontier Analysis (Kammoun, 

2018). 

Another variation of the DEA method is the DEA-Malmquist Productivity Index. A study 

used the DEA-MPI method in examining four Aegean passenger ports using the data gathered 

from 2003 to 2010. Two inputs (labor and total expenditures) and three outputs (passenger calls, 

ship calls, and total income) were set as variables in the study. The research found that the 

average efficiency scores by year did not follow a specific trend and fluctuated (Güner and 

Coskun, 2013). Baran and Górecka (2015) made use of DEA-CCR and DEA-BCC models to 

determine the overall technical efficiency, pure technical efficiency, and scale efficiency of 18 

container ports all around the world. They also included the application of Malmquist 

Productivity Index, which was used to analyze the changes in seaport productivity of four ports 

from 1996 to 2012. The study indicated that technological progress had more impact on the 

change in productivity of ports than changes in technical efficiency. 

Kutin et al. (2017) applied output-oriented DEA-CCR and DEA-BCC to compare the 

efficiencies of fifty ASEAN container ports. The study grouped the sample ports into six 

categories depending on the geographic location1 of port and the handling equipment used in 

the dock (e.g., rubber-tired gantry systems, straddle gantry systems, forklift truck systems, etc.). 

The input parameters considered in the analysis vary depending on the category, but only one 

output, container throughput in TEUs, was considered. The results revealed that, in general, 

 
1 Ports located in a riverbank connected to the sea are called “inland seaports” and those located by the seaside are call “seaports”. 



 

 
 

ASEAN seaports perform better than ASEAN inland seaports. Analyses also implied that 

ASEAN ports have relatively good scale efficiencies and can handle an increase in container 

volume. Hung and Wang (2010) studied the efficiencies of 31 ports in 9 various countries in 

Asia, ranked among the world’s leading 100 ports in 2003. The study used input-oriented DEA 

to assess the operating performance, review the effect of geographical factors, and determine 

efficiency rankings of Asian container ports. The results showed that the overall inefficiencies 

of Asian ports are primarily due to pure technical efficiencies and that port managers should 

focus efforts on improving management practices. 

Using four DEA models–DEA-CCR, DEA-BCC, cross-efficiency in DEA-CCR, and 

cross-efficiency in DEA-BCC models, Lirn and Gou (2011) benchmarked the efficiencies of 

ten ports from the ASEAN and VISTA regions. They considered four inputs and one output in 

all their models. The results showed that the port of Singapore, the port of Ambarli in Turkey, 

and the port of Durban in South Africa were the most efficient among the sampled ports. The 

authors suggest that port managers can improve efficiency by balancing the resources it inputs 

and the output it receives and by adapting an appropriate marketing positioning strategy. 

In the local context, the DEA method was also applied in the different fields of study. The 

efficiencies and productivity change of 78 state universities and colleges were examined using 

the method and DEA-MPI (Cuenca, 2011). In the field of disaster resilience, the DEA method 

was applied in various households of Compostela Valley to estimate a composite resilience 

score in responding to climate-induced calamities such as floods and landslides (Villano et al., 

2014). The DEA was also used in the field of public health. Social Hygiene Clinics were 

evaluated and benchmarked using the basic method (Seposo, et al., 2019). 

 

3. THE ANALYSIS MODEL 

 

3.1 Data Envelopment Analysis 

 

Data Envelopment Analysis (DEA) is a non-parametric technique (i.e., it does not require 

assumptions on functional form like regression equations) that can be used to assess the 

efficiency of an individual firm. This firm—called a Decision-Making Unit (DMU)—is the 

fundamental unit of analysis and is responsible for decisions that influence the production 

process and the efficiency level at which the production is carried out (Charnes et al., 1978). 

DEA measures the efficiency of a particular DMU by comparing it with other homogenous 

DMUs that utilize the same multiple inputs to produce the same types of outputs. For each 

DMU, DEA seeks out input and output weights that maximize the corresponding efficiency 

score. If a DMU obtains an efficiency score greater than or equal to one, it is efficient, whereas 

it is considered inefficient if it gets less than one. The most efficient DMUs form a frontier that 

‘envelops’ all the relatively inefficient DMUs, hence the term ‘Data Envelopment Analysis.’ 

Charnes, Cooper, and Rhodes (CCR) invented the technique of Data Envelopment 

Analysis in 1978. It is also commonly known as the DEA-CCR model (Charnes et al., 1978). 

This method is based on linear programming and converts the input and output variables to 

measure efficiency. The DEA-CCR model assumes that production follows constant returns to 

scale (CRS). This means that there are no economies of scale as the level of output changes, 

specifically, an increase in the input results in a proportional increase in output. Banker, 

Charnes, and Cooper (BCC) later extended the DEA-CCR method in 1984 to allow a variable 

returns to scale (VRS) assumption. The model was known as the DEA-BCC (Banker et al., 

1984). Since then, DEA has become one of the most common performance evaluation 

techniques used by experts in the management discipline. 

It is important to note that the production frontiers produced by each model are different. 



 

 
 

The information that one can infer from both models is limited to whether or not a DMU can 

improve its performance relative to the set of other DMUs to which it is being compared. In 

this regard, changing the set of DMUs in the analysis would likely change the relative efficiency 

results (Cullinane and Wang, 2006). 

 

3.2 Model Specification 

 

DEA models can be classified into whether they are input and output-oriented. The input-

oriented DEA model tries to minimize the inputs of a DMU for producing a desired level of 

output to be achieved. In contrast, the output-oriented DEA model maximizes the outputs while 

keeping the input at a constant level. In general, input-oriented DEA focuses on operational and 

managerial issues while output-oriented DEA is more associated with planning and strategy 

(Cullinane et al., 2005).  

This study utilizes the output-oriented formulation of the DEA-CCR and DEA-BCC 

models because the inputs used in the study (e.g., port area and berth length) are impractical to 

minimize. The infrastructure properties of these inputs have already been configured at a 

constant level; hence, it is hard to provide recommendations on port area and berth length 

reduction. More importantly, port managers are more interested in how much they can increase 

their productions given the constraints they currently encounter (Kutin et al., 2017).  

 

3.2.1 DEA-CCR 

 

As presented in the previous section, DEA focuses solely on the relative efficiencies of each 

port by comparing one DMU with all the other DMUs in the dataset considered. DEA can 

therefore be described as data-oriented, as it derives efficiency evaluations directly from the 

data, with minimal assumptions. The problem of obtaining the efficiencies can be expressed as 

a task of fractional programming, but to apply it, DEA consists of solving linear programming 

tasks for each DMU under evaluation (Martić et al., 2009). 

The objective of the linear formulation is to maximize the weighted relative efficiency of 

one DMU by multiplying a combination of weights to each input and output. This formulation 

ensures that the DMU is as efficient as possible. Seeking the weights is subject to the constraint 

that (a) the calculated weighted efficiencies of the other DMUs in the set do not exceed one 

when using the weights and (b) that each weight is positive (i.e., since they represent the relative 

importance of an input or output). 

Mathematically, we let R be the total number of DMUs in the analysis. For a selected 

DMU which uses a combination of n inputs and m outputs, let xji be the observed magnitude of 

a j-type input for an entity i (xji > 0; j = 1, 2, 3, …, n; i = 1, 2, 3, …, R) and yki be the observed 

magnitude of a k-type output for entity i (yki > 0; k = 1, 2, 3, …, m; i = 1, 2, 3, …, R). The basic 

model for computing the relative efficiency score of a selected DMU p, given multiple input 

and output factors, is given below:  

 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃𝑝 = ∑ (𝑢𝑘𝑦𝑘𝑝)/ ∑ (𝑣𝑗𝑥𝑗𝑝)𝑛
𝑗=1

𝑚
𝑘=1   (1) 

subject to 

 ∑ (𝑢𝑘𝑦𝑘𝑖)/ ∑ (𝑣𝑗𝑥𝑗𝑖) ≤ 1,𝑛
𝑗=1

𝑚
𝑘=1   𝑖 = 1, 2, 3, … , 𝑖𝑝, … , 𝑅     (2) 



 

 
 

 𝑢𝑘 ≥ 𝜀,            𝑘 = 1,2,3, … , 𝑚  (3) 

 𝑣𝑗 ≥ 𝜀,             𝑗 = 1,2,3, … , 𝑛  (4) 

 

where, 

𝜃𝑝 : relative efficiency of the pth DMU 

𝑚 : number of outputs 

𝑢𝑘 : weights assigned for output k 

𝑛 : number of inputs 

𝑣𝑗 : weights assigned for input j 

𝑅 : number of DMUs 

𝜀 : a small positive value 

 

The objective function in (1) is the relative efficiency of the pth DMU expressed as the 

ratio between the weighted sum of outputs and the weighted sum of inputs. The constraint in 

(2) indicates that the calculated weights from (1) will produce a value of 𝜃𝑝 such that 0 < 𝜃𝑝 ≤1 

for all the other R DMUs. The calculated weights 𝑢𝑘 and 𝑣𝑗 that satisfy (1)-(4) represents the 

importance of each input and output for the selected DMU. It also makes sure that the inefficient 

DMUs are inside the efficiency frontier. 

If the efficiency score, 𝜃𝑝, is equal to one then the selected DMU has the maximum value 

for 𝜃𝑝 and is operating at the efficiency frontier. This means that there is no way for the DMU 

to further increase its level of output given its current level of input. However, if the DMU 

obtained an efficiency score of less than one, the DMU is deemed relatively inefficient. A DMU 

is relatively inefficient when it can expand any of its outputs without changing any of its inputs 

and without reducing the level of all its other outputs.  

A DMU is said to operate under constant return to scale if an increase in the inputs 

proportionately increases the outputs. The CCR model calculates the overall technical 

efficiency wherein the pure technical efficiency and scale efficiency are aggregated (Martić et 

al., 2009). 

 

3.2.2 DEA-BCC 

 

The DEA-BCC or variable returns to scale model is the most important extension of the 

CCR model (Banker et al., 1984). It considers the productivity of a DMU at the most productive 

scale size, which may not be attainable for other smaller DMUs. The DEA-CCR model is only 

appropriate when all DMUs are functioning at an optimal scale. The consideration of imperfect 

competition, financial constraints, demand disparity, etc., may cause a DMU to not operate at 

the optimal level. Therefore, the DEA-BCC efficiency score only measures pure technical 

efficiency. It is similar to the CCR model but with an additional constraint introduced (Martić 

et al., 2009) 

 ∑ λ𝑐 = 1𝑅
𝑐=1   (5) 

where, 

λ : coefficient of linear combination 

 

A DMU operates under variable returns to scale if an increase in the inputs does not 

proportionately change the outputs. The BCC model ignores the impact of scale size and gives 



 

 
 

the pure technical efficiency score. This is done by comparing DMUs of the same scale. In most 

cases, the small units are qualitatively different from large units and a comparison between the 

two may misrepresent the comparative efficiency.  

Again, the DEA model can be output-oriented or input-oriented. In the input-oriented 

model, an inefficient unit can become efficient by proportionately decreasing the inputs while 

the outputs remain the same. It contracts the inputs as far as possible while controlling the 

outputs. Meanwhile, in the output-oriented model, the inefficient unit can become efficient by 

proportionately increasing the outputs while the inputs remain constant. The orientation of the 

model determines the projection direction of the inefficient DMUs. For the CCR model, the 

input and output measurements are always the same. For the BCC model, an input-oriented 

model must be used to get input interpretations while an output-oriented model must be used 

separately to get output interpretations. 

 

3.2.3 Scale Efficiency 

 

The technical efficiencies derived from both the DEA-CCR and DEA-BCC models are often 

used to calculate scale efficiency for each DMU p (Cullinane and Wang, 2006). The scale 

efficiency is defined as the ratio between the overall technical efficiency score (calculated from 

DEA-CCR) and the pure technical efficiency score (calculated from DEA-BCC) of each DMU 

in the analysis. It denotes the optimum degree to which the DMU is efficient, enabling 

maximum outputs. 

 𝑆𝐸𝑝 =
𝜃𝑝,𝐶𝐶𝑅

𝜃𝑝,𝐵𝐶𝐶
  (6) 

where, 

𝑆𝐸𝑝 : Scale Efficiency score 

𝜃𝑝,𝐶𝐶𝑅 : CCR efficiency score 

𝜃𝑝,𝐵𝐶𝐶 : BCC efficiency score 

 

Under the scale efficiency measure, for any DMU p, if 𝑆𝐸𝑝 = 1, then the DMU p is 

considered scale efficient. This means that the current size of the operation is already at the 

optimal point. Changes and modifications on its size will render the DMU less efficient. On the 

other hand, if 𝑆𝐸𝑝 < 1, then this indicates that the firm is over/under-dimensioned (Ulas and 

Keskin, 2015). 

 

4. METHODOLOGY 

 

Given the diversity of ports and complexity of management in the local setting, it is necessary 

to restrict the scope of analysis to a limited number of ports in the Philippines. In this study, all 

DMUs are domestic seaports in the Philippines. Table 1 lists the names of the chosen ports 

along with their locations and respective island group.  

The three main island groups of the Philippines (Luzon, Visayas, and Mindanao) were 

considered for this study. Only the baseports classified by the Philippine Ports Authority (PPA) 

from the three regions were examined because they are the main hub ports in their respective 

areas. These ports also hold the regional administration office known as the Port Management 

Office (PMO). PMOs operate and manage other ports and terminals with areas of jurisdiction 

separate and independent from the baseport. PMOs serve as the local authority for the area 

under their control. This study identified six baseports from Luzon, four baseports from Visayas, 



 

 
 

and nine baseports from Mindanao, putting the total number of DMUs considered in the study 

at 19. 

Table 1. Ports Considered 

Port Name Location / PMO Island Group 

Calapan Mindoro Luzon 

Lamao Bataan Luzon 

Legazpi Bicol Luzon 

Lucena Quezon Province Luzon 

Masbate Masbate Luzon 

Puerto Princesa Palawan Luzon 

Banago Negros Occidental Visayas 

Dumaguete Negros Oriental Visayas 

Ormoc Western Leyte Visayas 

Tagbilaran Bohol Visayas 

Cagayan De Oro Misamis Oriental Mindanao 

Dapitan Zamboanga del Norte Mindanao 

Iligan Lanao del Norte Mindanao 

Makar Wharf SOCSARGEN Mindanao 

Nasipit Agusan del Norte Mindanao 

Ozamiz Misamis Occidental Mindanao 

Sasa Davao Mindanao 

Surigao Surigao Mindanao 

Zamboanga Zamboanga Mindanao 

 

The total number of DMUs in the analysis is critical. Using a small sample of DMUs is 

more likely to skew the results and produce a high proportion of efficient units. Cooper et.al 

(2000) suggest using the following equation for the determination of minimum sample size: 

 

 𝑁 ≥ max {𝑚 × 𝑠, 3(𝑚 + 𝑠)} (7) 

where, 

𝑁 : minimum sample size of DMUs 

𝑚 : number of inputs 

𝑠 : number of outputs 

 

Using (7), it can be verified that the 19 DMUs selected are sufficient for the analysis that utilizes 

two inputs and three outputs. Since the technical efficiencies derived from DEA are relative, 

using the maximum available sample size allows for an empirical yet meaningful generalization 

of the results and improves the accuracy of the efficiency estimates for each DMUs (Cullinane 

and Wang, 2006). 

In terms of the variables, a common feature of port benchmarking studies is the use of 

operational data (Kutin et al., 2017). The inputs and outputs were selected through logical 

justification and related literature. This study used input variables based on land and facilities 

available in the port because these are instrumental in reflecting the possible capacity and 

handling power to move the goods in the port sector. The berth is the area in the port that 

facilitates the stationing of vessels alongside the pier, quay, or wharf. The port area is 

considered to be the total area where all activities in the port are done, including waiting areas, 



 

 
 

storage areas, passenger terminals, etc.   

The chosen output parameters consist of cargo throughput, passenger count, and the 

number of ship calls. These were selected as they are directly affected by the input parameters. 

They are also consistent with the targets of the maritime industry development plan programs 

(Maritime Industry Authority, 2018). The output parameters essentially require that the 

baseport to be analyzed should cater to both passenger and cargo demand.  

The data used in this study are secondary in nature. Information regarding the port’s berth 

length and total area were derived through correspondence with each PMO office. The values 

of cargo throughput, passenger count, dwell time, and ship calls were acquired from the 2019 

annual statistics report of the PPA. Further consideration is the availability of the analysis 

parameters selected for this study as given in Table 2: 

 

Table 2. Compilation of Input and Output Variables 

Input Output 

Total Berth Length Cargo Throughput 

Total Port Area Passenger Count 

 Ship Call 

 

5. RESULTS AND DISCUSSION 

 

Parameter data were extracted from the 2019 PPA statistical report and consultations and 

communications with the different port operations divisions of the PMOs. Each DMU was 

modeled using the output-oriented DEA-CCR and output-oriented DEA-BCC. Their 

corresponding scale efficiencies were also acquired. Models were implemented using the DEA 

Solver LV8 (Cooper et.al, 2000) and DEAP 2.1 program (Coelli, 2003). Results are consistent 

in both implementation and yielded the same efficiency scores. 

Table 3 shows the DEA-CCR score of each DMU. According to the model, ports that 

obtained a score of 1.00 will be treated as efficient, and ports with less than 1.00 will be treated 

as inefficient. The ports deemed to be efficient are Calapan, Tagbilaran, Cagayan de Oro, and 

Ozamiz. These ports are classified as efficient particularly in terms of input/output 

configuration as well as the size of operations. The fifteen other ports are found to be inefficient 

as they have CCR scores of less than one, with Iligan having the lowest score at 0.1359. These 

ports are experiencing inefficiencies possibly due to managerial underperformance or are not 

operating at an optimal scale. The average overall technical efficiency is found to be 0.659 or 

at 65.9% percent level. This means that the overall output can be further expanded by 34.1% 

for the same set of input quantities if all ports were as efficient as the benchmark ports identified 

by the DEA.  

To better understand the source of inefficiencies, the overall technical efficiency was 

decomposed into two mutually exclusive and non-additive components: pure technical 

efficiency and scale efficiency (Kumar and Gulati, 2008). 

The pure technical efficiency scores from the DEA-BCC analysis are also shown in Table 

3. The average pure technical efficiency is found to be 0.7765 which tells that the ports can 
further increase the outputs by 22.4% under the efficiency frontier of the output-oriented DEA-

BCC model. Seven out of the nineteen ports got a score of 1.0 and are classified as efficient and 

properly managed. These are Calapan, Lamao, Legazpi, Masbate, Tagbilaran, Cagayan de Oro 

and Ozamiz. Comparing to the results of the DEA-CCR, the ports of Lamao, Legazpi, and 

Masbate are considered efficient if the average pure technical efficiency is only considered.  

Ports with scores equal to one serve as the benchmark ports and depict best practices. The other 

twelve ports are classified as inefficient as they fall below the BCC frontier. These may imply 



 

 
 

that these ports have room for improvement in their management strategies. 

 

Table 3. Overall Technical Efficiency Score (CCR), Pure Technical Efficiency Score 

(BCC), Scale Efficiency (SE), and Return to Scale of each DMU 

DMU CCR score BCC score SE score Return to Scale 

Calapan 1 1 1 Constant 

Lamao 0.5738 1 0.5738 Increasing 

Legazpi 0.7932 1 0.7932 Increasing 

Lucena 0.2944 0.3057 0.9630 Constant 

Masbate 0.6407 1 0.6407 Increasing 

Puerto Princesa 0.6038 0.6726 0.8977 Constant 

Banago 0.3141 0.3569 0.8801 Increasing 

Dumaguete 0.5525 0.7116 0.7764 Constant 

Ormoc 0.5847 0.7208 0.8112 Increasing 

Tagbilaran 1 1 1 Constant 

Cagayan De Oro 1 1 1 Constant 

Dapitan 0.5732 0.8268 0.6933 Increasing 

Iligan 0.1359 0.1435 0.9470 Increasing 

Makar Wharf 0.902 0.9252 0.9749 Increasing 

Nasipit 0.7879 0.8571 0.9193 Increasing 

Ozamiz 1 1 1 Constant 

Sasa 0.8278 0.8325 0.9944 Increasing 

Surigao 0.4499 0.5069 0.8876 Increasing 

Zamboanga 0.4822 0.8946 0.5390 Constant 

MEAN 0.6587 0.7765 0.86  

 

In terms of scale efficiency scores, the average scale efficiency is found to be 0.86. Four 

ports—Calapan, Tagbilaran, Cagayan De Oro, and Ozamiz—were identified to already have 

the optimal size of operations by having scale efficiency scores equal to one. The other ports 

got scale efficiency scores less than 1.0 with Zamboanga having the lowest score at 0.539. This 

means that these ports are experiencing scale inefficiencies. Scale inefficiencies can be 

furthered characterized by the type of return to scale. 

The last column of Table 3 summarizes information about the return to scale property of 

the DMUs. A port can have increasing returns to scale, constant returns to scale, or decreasing 

returns to scale. If a port is operating with either increasing or decreasing returns to scale, then 

it can further improve its efficiency by operating within CCR (Iqbal and Awan, 2015). 

Increasing returns to scale occur when the increase in outputs is faster than the growth of inputs. 

Decreasing returns to scale occur when the increase in outputs is slower than the growth of 

inputs.  

Eleven ports are facing increasing returns to scale and eight ports are deemed to have 

constant returns to scale. For ports that are operating at an increasing returns to scale, reducing 

their outputs while improving and expanding their inputs will significantly result in a more 

efficient system. This means that for these ports, demand can be diverted to other servicing 

ports to improve efficiency. They also have the option to expand their facilities to have a 

constant return to scale. Returns to scale can also be constant when the growth of inputs and 

outputs are similar. These ports are at the CCR and BCC efficient frontiers. They are at the 

highest productivity and have reached their optimal size (Huguenin. 2012).    

The ports of Calapan, Tagbilaran, Cagayan de Oro, and Ozamiz are all efficient regardless 

of the DEA model. This indicates that these ports are properly managed and operating at the 

optimal scale. CCR and BCC classifications can vary per DMU as with Lamao, Legazpi, and 



 

 
 

Masbate. This result is not surprising since the DEA-CCR provides information on the 

aggregated pure technical and scale efficiency while DEA-BCC only focuses on pure technical 

efficiency. Contrary to the CCR classification, Lamao, Legazpi and Masbate are efficient ports 

under the BCC frontier which implies that these ports have a scale problem and the inefficiency 

due to poor management is eliminated. The other ports that were not mentioned are consistently 

inefficient. This means that they are located below the efficiency frontiers and that the ports 

still have room for improvement relative to the efficient ports. Improving management and the 

scale of operations can be done to achieve an increase in efficiency. 

Table 4 presents the calculated weighted output parameters for each model used in the 

analysis. This gives port managers an idea on where to focus their efforts in improving their 

port’s efficiency. The weighted outputs can be used to identify the most important output 

parameters in determining each port’s efficiency. For example, when considering the DEA-

CCR model for baseport Lamao, the total cargo throughput has the most weight, followed by 

the number of ship calls, while the total passengers have zero weight. This suggests that in the 

case of baseport Lamao, the most effective way of increasing efficiency is prioritizing to 

increase the total cargo throughput and then total number of ship calls. On the other hand, using 

the same model for the case of port Puerto Princesa, the most effective way of increasing their 

efficiency scores is putting all efforts in increasing annual cargo throughput.  

 

Table 4. Calculated Weighted Output Parameters for each Model 

DMU 

CCR (CRS) Model BCC (VRS) Model 

𝒖𝟏 × Ship 

Calls/Number 

of Vessels 

𝒖𝟐 × Total 

Cargo 

Throughput 

𝒖𝟑 × Total 

Passengers 

𝒖𝟏 × Ship 

Calls/Number 

of Vessels 

𝒖𝟐 × Total 

Cargo 

Throughput 

𝒖𝟑 × Total 

Passengers 

Calapan - - 1.0000 1.0000 - - 

Lamao 0.3605 0.6395 - 0.3447 0.6553 - 

Legazpi - 1.0000 - - 1.0000 - 

Lucena 0.9075 0.0925 - 0.9305 0.0695 - 

Masbate 0.7603 0.2397 - 0.7623 0.2377 - 

Puerto 

Princesa 
- 1.0000 - - 1.0000 - 

Banago 0.2913 0.7087 - 0.2670 0.7330 - 

Dumaguete 0.7655 0.2345 - 0.8167 0.1833 - 

Ormoc - 0.5073 0.4927 - 0.2406 0.7594 

Tagbilaran - 1.0000 - 0.5498 0.4502 - 

Cagayan De 

Oro 
0.0346 0.9654 - - 0.9471 0.0529 

Dapitan 0.7091 0.2909 - 0.6614 0.3386 - 

Iligan - 1.0000 - - 1.0000 - 

Makar 

Wharf 
- 1.0000 - - 1.0000 - 

Nasipit - 1.0000 - - 1.0000 - 

Ozamiz 0.7878 0.2122 - 0.5942 0.4058 - 

Sasa - 1.0000 - - 1.0000 - 

Surigao 0.6695 0.3305 - 0.6719 0.3281 - 

Zamboanga - 0.7284 0.2716 - 0.3413 0.6587 

 

The next important step for port managers is knowing how much they should increase their 

outputs to attain the same level of efficiency as the ports in the frontier. Using DEA, target 

values were also calculated and are presented in Tables 5 and 6. These values were derived by 

projecting the efficiency scores of the inefficient DMUs into a hypothetical DMU operating in 



 

 
 

the established efficiency frontier.  

 

Table 5. Target Values for Ports to be CCR (CRS) efficient 

DMU 
Ship Calls/Number of Vessels Total Cargo Throughput (tons) Total Passengers 

Current Target Diff.(%) Current Target Diff.(%) Current Target Diff.(%) 

Calapan 20,155 20,155 - 44,734 44,734 - 5,607,982 5,607,982 - 

Lamao 792 1,380 74.27 123,571 215,352 74.27 107,421 396,714 269.31 

Legazpi 1,417 5,431 283.26 753,360 949,809 26.08 122,040 1,713,061 1,303.69 

Lucena 5,803 19,708 239.62 126,285 428,889 239.62 921,793 5,566,599 503.89 

Masbate 4,532 7,074 56.08 305,268 476,465 56.08 1,074,532 2,067,418 92.40 

Puerto 

Princesa 
1,251 14,900 1,091.06 1,573,430 2,605,929 65.62 188,378 4,700,013 2,394.99 

Banago 1,814 5,776 218.42 320,034 1,019,050 218.42 219,498 1,710,896 679.46 

Dumaguete 12,119 21,933 80.98 792,993 1,435,175 80.98 2,185,898 6,401,397 192.85 

Ormoc 4,931 8,596 74.33 441,251 754,695 71.04 1,486,794 2,542,944 71.04 

Tagbilaran 11,022 11,022 - 1,927,676 1,927,676 - 3,476,726 3,476,726 - 

Cagayan De 

Oro 
2,727 2,727 - 6,683,369 6,683,369 - 1,157,292 1,157,292 - 

Dapitan 4,110 7,170 74.46 360,104 628,223 74.46 866,306 2,126,925 145.52 

Iligan 498 4,553 814.33 289,735 2,132,310 635.95 129,690 1,500,249 1,056.80 

Makar 

Wharf 
1,226 2,073 69.12 3,594,327 3,984,711 10.86 27,749 827,424 2,881.82 

Nasipit 807 4,729 486.03 1,251,555 1,588,426 26.92 415,845 1,528,208 267.50 

Ozamiz 17,192 17,192 - 932,013 932,013 - 3,504,805 3,504,805 - 

Sasa 777 4,790 516.51 3,880,318 4,687,537 20.80 7,156 1,695,317 23,590.85 

Surigao 4,443 9,875 122.26 468,618 1,041,529 122.26 1,061,229 2,967,210 179.60 

Zamboanga 10,149 21,845 115.25 2,567,770 5,325,242 107.39 3,322,540 6,890,543 107.39 

 

Table 6. Target Values for Ports to be BCC (VRS) efficient 

DMU 
Ship Calls/Number of Vessels Total Cargo Throughput (tons) Total Passengers 

Current Target Diff.(%) Current Target Diff.(%) Current Target Diff.(%) 

Calapan  20,155   20,155   -     44,734   44,734   -     5,607,982   5,607,982   -    

Lamao  792   792   -   123,571   123,571   -   107,421   107,421   -  

Legazpi  1,417   1,417   -   753,360   753,360   -   122,040   122,040   -  

Lucena  5,803   18,981   227.09   126,285   413,061   227.09   921,793   4,867,367   428.03  

Masbate  4,532   4,532   -   305,268   305,268  -   1,074,532   1,074,532   -  

Puerto 

Princesa 
 1,251   10,304   723.66   1,573,430   2,339,401   48.68   188,378   3,275,965   1,639.04  

Banago  1,814   5,083   180.21   320,034   896,754   180.21   219,498   1,514,607   590.03  

Dumaguete  12,119   17,032   40.54   792,993   1,114,449   40.54   2,185,898   4,140,483   89.42  

Ormoc  4,931   7,220   46.42   441,251   612,152   38.73   1,486,794   2,062,644   38.73  

Tagbilaran  11,022   11,022   -     1,927,676   1,927,676   -     3,476,726   3,476,726   -    

Cagayan De 

Oro 
 2,727   2,727   -     6,683,369   6,683,369   -     1,157,292   1,157,292   -    

Dapitan  4,110   4,971   20.94   360,104   435,518   20.94   866,306   1,248,318   44.10  

Iligan  498   4,968   897.53   289,735   2,018,467   596.66   129,690   1,559,575   1,102.54  

Makar 

Wharf 
 1,226   2,437   98.76   3,594,327   3,884,859   8.08   27,749   879,459   3,069.34  

Nasipit  807   5,196   543.86   1,251,555   1,460,188   16.67   415,845   1,595,035   283.57  

Ozamiz  17,192   17,192   -     932,013   932,013   -     3,504,805   3,504,805   -    

Sasa  777   4,886   528.88   3,880,318   4,661,128   20.12   7,156   1,709,079   23,783.17  

Surigao  4,443   8,765   97.27   468,618   924,431   97.27   1,061,229   2,509,564   136.48  

Zamboanga  10,149   12,738   25.51   2,567,770   2,870,157   11.78   3,322,540   3,713,811   11.78  

 



 

 
 

The highlighted ports in each table represent the benchmark ports identified by the DEA 

model used in the analysis. These ports have the same current and target outputs, which means 

that they are already operating at the efficiency frontier. It can also be observed that the output 

parameters with the highest weights presented in Table 4 have the lowest percentage difference 

between the current and the target output values. This is consistent with the recommendation 

that port managers focus on these output parameters, i.e., they can reach a more efficient state 

with the least amount of change. 

Combining the data in tables 4, 5, and 6, the port managers can now formulate a strategic 

plan to increase the efficiency of their respective ports. For example, in the case of baseport 

Lamao, around 64% of the overall effort to increase port efficiency should focus on reaching 

the target goal of 215, 352 metric tons of annual cargo throughput, while the remaining 36% 

should focus on increasing the number of ship calls to from 792 to 1380 in the next year. 

Figure 1 is the illustration of CCR and BCC scores as data pairs on a two-dimensional 

graph. The graph can be interpreted to easily understand the relative role of pure technical 

efficiency and scale effects in relation to the scores (Baran and Górecka, 2015). The graph is 

divided into four regions by the vertical and diagonal dashed lines. The vertical line denotes the 

mean DEA-BCC score (0.7765) and the diagonal line is a line with a slope that represents the 

average scale efficiency (0.8574). 

The first quadrant (upper right) shows that Sasa, Nasipit, Makar Wharf, Ozamiz, 

Tagbilaran, Cagayan de Oro, and Calapan have high pure technical efficiency and high scale 

efficiency. This indicate that the resource utilization of these ports, whether in technique or 

scale, reaches the fittest. These implies that the ports can exploit their facilities well and can 

also serve large amounts of demand. No further recommendations can be made for these ports, 

and they simply need to maintain their current operations. 

Five ports are located at the second quadrant (upper left) namely: Iligan, Lucena, Banago, 

Surigao, and Puerto Princesa. This port has a relatively high scale efficiency but relatively low 

pure technical efficiency. This means that the ports can accommodate a larger number of 

passengers and cargos with limited performance, but do not efficiently operate their resources. 

Better port management will help increase their efficiencies. Capacity utilization of the berthing 

space should be increased as well as the optimization of the ship dwell times. This can be done 

by implementing route capacity measurements and appropriate time tabling techniques. 

 

 
Figure 1. Graphical Illustration of the Efficiency Scores 
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The ports at the lower-right part are Dapitan, Zamboanga, Masbate, Lamao and Legazpi. 

They have high pure technical efficiency but low scale efficiency. These ports manage their 

facilities well, but they are subject to scale effects because of their inability to accommodate 

the present demand. Mitigating strategies include the expansion of the port and construction of 

more berthing spaces to increase the ship capacity of the port. On the demand side, passengers 

and cargo can be diverted to other less congested ports that also provide the same services. 

Lastly, the ports on the lower-left part are Dumaguete and Ormoc. They have relatively 

low pure technical efficiency and low scale efficiency. This means that the ports can only 

accommodate low demand with inefficient resource utilization. Therefore, these ports need to 

improve their overall competitiveness and efficiency by upgrading the port and managing their 

resources better. 

 

6. CONCLUSIONS AND RECOMMENDATIONS 

 

The non-parametric approach called the Data Envelopment Analysis was applied in this study 

to measure the relative efficiencies of selected nineteen PPA base ports in the Philippines. Six 

base ports from Luzon, four base ports from Visayas, and nine base ports from Mindanao were 

identified to be the Decision Making Units (DMU) for this study. The chosen input data were 

the total port area and the total number of berthing spaces, while the chosen output data were 

the total passenger count, total cargo throughput, and total number of ship calls. These were 

extracted from the 2019 port statistics data of PPA and requested from the various port 

management offices. 

The results of the DEA-CCR and DEA-BCC models show that the average efficiency 

scores are 0.6587 and 0.7765, respectively. The ports of Calapan, Tagbilaran, Cagayan de Oro, 

and Ozamiz demonstrated the best performance in both models. The ports of Lamao, Legazpi 

and Masbate achieved pure technical efficiency but are classified as inefficient under DEA-

CCR. The other ports were consistently classified as inefficient regardless of the model. The 

scale efficiencies of the ports were also identified for analysis. The returns-to-scale approach 

was used to assess whether each port is in increasing, decreasing, or constant returns to scale. 

Increasing returns to scale was found on eleven ports. 

The findings of this study can provide port masters with insights into resource 

allocation and port operation optimization. For technically inefficient ports, increasing the 

number of goods and people that use the port thru proper management can be prioritized so that 

the facilities can be fully utilized. For scale inefficient ports, modernizing the current state of 

the ports by either increasing labor or improving infrastructure can address the inefficiency. 

Possible future development for this study is to acquire more data that can be used as 

input and/or output variables. The increase of input and output metrics will increase the 

accuracy of the results. Future studies can explore other input variables such as labor, equipment, 

and capital, among others. The paper has not used labor as an input variable since it tends to 

correlate with output negatively. This negative correlation is especially true for ports with low 

mechanization and automation, which usually have a higher number of employees and 

relatively low output (Lirn and Guo, 2011). Using port operational data such as loading and 

unloading efficiency and financial information such as yearly investments, revenues and costs 

can also help provide a better analysis and efficiency measurement of the DMUs. Acquiring 

panel data will enable the use of the DEA-Malmquist Productivity Index (DEA-MPI). This 

method examines the changes in the efficiency of a port between two time periods. Another 

efficiency measurement such as the Stochastic Frontier Analysis (SFA) can be performed to 

improve the research. 
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