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Abstract: The steady growth of economic activities in the Philippines necessitates the need for
efficient ports to accommodate the growing demand for trade. This study applies the Data
Envelopment Analysis (DEA) to provide the efficiency scores of the nineteen base ports in the
country using data from 2019. An output-oriented analysis approach was applied for the DEA
constant return to scale model (DEA-CCR) and DEA variable return to scale model (DEA-
BCC) to compute the overall technical efficiency and pure technical efficiency of the ports. The
findings show that the ports of Calapan, Tagbilaran, Cagayan de Oro, and Ozamiz demonstrated
the best performance in both models. The ports of Lamao, Legazpi, and Masbate achieved pure
technical efficiency but are classified as inefficient under DEA-CCR. The other ports were
consistently classified as inefficient regardless of the model. The target outputs for the ports
were also derived by projecting the efficiency scores of the inefficient DMUs into a hypothetical
DMU operating in the established efficiency frontier.
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1. INTRODUCTION

Logistics play a critical role in the development of an archipelagic country like the Philippines.
The extensive area of the bays and coastal and oceanic waters gives the maritime sector a vital
role in the development and growth of the local economy. For centuries, the Philippine
territorial waters are the primary medium for transporting goods in domestic and international
trade and play a crucial role in inter-island connectivity.

According to the Philippine Statistics Authority (PSA), almost 99.9 percent of domestic
trade commodities were traded through water transportation (coastwise) and the remaining 0.1
percent through air transportation (Philippine Statistics Authority, 2019). The Maritime
Industry Authority (MARINA) reports that in 2011-2017, the number of domestic shipping
passengers has increased from about 50 million to 72 million, or an average annual growth rate
0f 6.5%. In the same period, domestic cargo also increased by 5.5% per year, from 74.17 million
tons in 2011 to 102.53 million tons in 2017 (Maritime Industry Authority, 2018). The total
domestic cargo throughput served by the maritime industry in 2019 reached 104.43 million tons.
On the other hand, inter-island shipping had also transported around 83.5 million passengers in
2019 (Maritime Industry Authority, 2020).


mailto:jsvillar1@up.edu.ph

The national government recognizes the need for efficient ports and continuously puts
efforts into improving the maritime transportation network. One of the ten-year Maritime
Industry Development Plan programs aims to improve the efficiencies of port facilities as part
of the Philippine Nautical Highway Development. A particular desired outcome of this program
is to increase the number of passengers, cargo volume, and the number of ship calls (Maritime
Industry Authority, 2018).

As the country’s population and economic activities continue to grow, port authorities are
tasked with maintaining the flow of goods, improving the efficiency of the port, and making
services more competitive to accommodate the growing demand for trade. Since ports are a
vital link in the overall trading chain, port efficiency is an essential metric in assessing the
international competitiveness and productivity of a nation (Tongzon, 1989; Hung et.al, 2010;
Lirn and Guo, 2011; Kutin, et.al, 2017). Port managers need to constantly evaluate the
operations and processes related to performance. The efficiency of a distribution center is an
important metric in assessing the effectiveness of an island or region in bridging the gap
between suppliers and consumers.

A great number of studies have focused on measuring the efficiency of international ports.
Most of the international studies concentrated on container ports and do not consider passenger
data. However, as of this writing, studies on the efficiency of domestic ports in the Philippines
have been rare. The measurement of efficiencies of domestic ports is scarce mainly because of
the relatively small trading volumes as compared to the lucrative business done in the container
ports. Furthermore, port data in the Philippines is not consolidated and requires significant
effort in acquiring. Hence, this paper hopes to contribute to the literature on efficiency
measurement and management of local ports and maritime transportation in the Philippines.
The researchers also aim to address the research gap between international and domestic ports
in the country.

The objective of this study is to apply using a non-parametric technique called the Data
Envelopment Analysis (DEA) in measuring and comparing the efficiencies of nineteen ports in
the Philippines. DEA Constant Return to Scale (DEA-CCR) and DEA Variable Return to Scale
(DEA-BCC) will be applied in this study. The efficiency scores of the ports will be calculated
and presented using the DEAP software and DEA Solver LV8.

This study is organized as follows: Section 2 is a review of related literature of studies
that used DEA as a measure of the efficiency with variations in types of ports, data requirements,
methodologies, and models; Section 3 outlines and defines the DEA CCR and BCC models
used in the analysis; Section 4 describes the implemented methodology as well as the definition
and the bases of the variables used as inputs and outputs; Section 5 provides the results and
analyses for DEA-CCR and DEA-BCC applied to the nineteen ports; Finally, Section 6
summarizes the outcomes, insights and concludes the results of this study.

2. REVIEW OF RELATED LITERATURE

In simple cases where production operations depend on a single input and output, managers can
easily measure efficiency by taking the ratio of the output and input. However, ports utilize
multiple inputs and cater to different types of services (e.g, passenger, dry cargo, liquid cargo,
container, etc.). DEA can effectively assess ports' relative efficiency since it was designed for
organizational units with multiple inputs and produce multiple measurable outputs.

One of the pioneering studies in analyzing seaport efficiency using DEA efficiency was
done in 1993. Twenty hypothetical seaports were measured using DEA-CCR, the standard DEA
model, with three variables as inputs and four as outputs (Roll and Hayuth, 1993). The same
process and model were then applied in a study examining 12 international ports and four



Australian container ports in 1996 (Tongzon, 2001). According to the study, the DEA technique
can be a significant alternative to classical econometric approaches to extracting efficiency
scores from sample observations. Another study also used DEA-CCR, in investigating cross-
sectional data for the year 1998 to establish a relationship between ownership type and port
efficiency of 31 container seaports (Valentine and Gray, 2001).

DEA-BCC was performed in a study of 26 Spanish seaports that were then grouped into
three based on their complexity (Martinez-Budria et al.,1999). In this study ports of high
complexity presented higher comparative efficiency levels, being closer to the efficiency
frontier as compared to the medium and low complexity ports. There are also studies that
applied both the DEA-CCR and DEA-BCC models. The efficiency of six seaports from Greece
and Portugal was estimated using both models. The researchers were able to conclude that five
seaports were efficient except for one, which is the port of Thessaloniki (Barros and
Athanassiou, 2004). In addition, sixty-nine container terminal ports with annual throughput of
10,000 TEUs in Europe were studied using both DEA models (Cullinane et al., 2004). The
general conclusion from this study is that the efficiency of different container ports can fluctuate
over time to different extents. Applying the models in the Asian region, Munisamy and Singh
(2011) calculated the technical efficiencies of 69 major container ports and was able to generate
efficiency ranking. The study was able to show that the overall technical inefficiency in Asian
container ports is due to pure technical efficiency rather than scale efficiency.

More recent studies applied new variations from the standard DEA. The DEA additive
models were used alongside the DEA CCR to examine the technical efficiencies of ports in
India from 1993 to 2011 (Rajasekar and Deo., 2014). It was concluded that port size is not a
related factor for port efficiency. The difference between input and output orientation were also
examined in a different study using both DEA-CCR and DEA-BCC. The results from this states
that there is no difference in efficiency identification of the decision-making units (Rajasekar
and Deo, 2014). The standard DEA model was also used in the analysis of nine Saudi Arabian
seaports and their comparison with Jazan port (Esmail, 2016). A comparison was also done in
2018, wherein the efficiency scores of seven Tunisian ports were computed using DEA-CCR,
DEA-BCC, and another non-parametric method, the Stochastic Frontier Analysis (Kammoun,
2018).

Another variation of the DEA method is the DEA-Malmquist Productivity Index. A study
used the DEA-MPI method in examining four Aegean passenger ports using the data gathered
from 2003 to 2010. Two inputs (labor and total expenditures) and three outputs (passenger calls,
ship calls, and total income) were set as variables in the study. The research found that the
average efficiency scores by year did not follow a specific trend and fluctuated (Giiner and
Coskun, 2013). Baran and Goérecka (2015) made use of DEA-CCR and DEA-BCC models to
determine the overall technical efficiency, pure technical efficiency, and scale efficiency of 18
container ports all around the world. They also included the application of Malmquist
Productivity Index, which was used to analyze the changes in seaport productivity of four ports
from 1996 to 2012. The study indicated that technological progress had more impact on the
change in productivity of ports than changes in technical efficiency.

Kutin et al. (2017) applied output-oriented DEA-CCR and DEA-BCC to compare the
efficiencies of fifty ASEAN container ports. The study grouped the sample ports into six
categories depending on the geographic location® of port and the handling equipment used in
the dock (e.g., rubber-tired gantry systems, straddle gantry systems, forklift truck systems, etc.).
The input parameters considered in the analysis vary depending on the category, but only one
output, container throughput in TEUs, was considered. The results revealed that, in general,

1 Ports located in a riverbank connected to the sea are called “inland seaports” and those located by the seaside are call “seaports”.



ASEAN seaports perform better than ASEAN inland seaports. Analyses also implied that
ASEAN ports have relatively good scale efficiencies and can handle an increase in container
volume. Hung and Wang (2010) studied the efficiencies of 31 ports in 9 various countries in
Asia, ranked among the world’s leading 100 ports in 2003. The study used input-oriented DEA
to assess the operating performance, review the effect of geographical factors, and determine
efficiency rankings of Asian container ports. The results showed that the overall inefficiencies
of Asian ports are primarily due to pure technical efficiencies and that port managers should
focus efforts on improving management practices.

Using four DEA models—DEA-CCR, DEA-BCC, cross-efficiency in DEA-CCR, and

cross-efficiency in DEA-BCC models, Lirn and Gou (2011) benchmarked the efficiencies of
ten ports from the ASEAN and VISTA regions. They considered four inputs and one output in
all their models. The results showed that the port of Singapore, the port of Ambarli in Turkey,
and the port of Durban in South Africa were the most efficient among the sampled ports. The
authors suggest that port managers can improve efficiency by balancing the resources it inputs
and the output it receives and by adapting an appropriate marketing positioning strategy.
In the local context, the DEA method was also applied in the different fields of study. The
efficiencies and productivity change of 78 state universities and colleges were examined using
the method and DEA-MPI (Cuenca, 2011). In the field of disaster resilience, the DEA method
was applied in various households of Compostela Valley to estimate a composite resilience
score in responding to climate-induced calamities such as floods and landslides (Villano et al.,
2014). The DEA was also used in the field of public health. Social Hygiene Clinics were
evaluated and benchmarked using the basic method (Seposo, et al., 2019).

3. THE ANALYSIS MODEL
3.1 Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a non-parametric technique (i.e., it does not require
assumptions on functional form like regression equations) that can be used to assess the
efficiency of an individual firm. This firm—called a Decision-Making Unit (DMU)—is the
fundamental unit of analysis and is responsible for decisions that influence the production
process and the efficiency level at which the production is carried out (Charnes et al., 1978).
DEA measures the efficiency of a particular DMU by comparing it with other homogenous
DMUs that utilize the same multiple inputs to produce the same types of outputs. For each
DMU, DEA seeks out input and output weights that maximize the corresponding efficiency
score. If a DMU obtains an efficiency score greater than or equal to one, it is efficient, whereas
it is considered inefficient if it gets less than one. The most efficient DMUs form a frontier that
‘envelops’ all the relatively inefficient DMUSs, hence the term ‘Data Envelopment Analysis.’

Charnes, Cooper, and Rhodes (CCR) invented the technique of Data Envelopment
Analysis in 1978. It is also commonly known as the DEA-CCR model (Charnes et al., 1978).
This method is based on linear programming and converts the input and output variables to
measure efficiency. The DEA-CCR model assumes that production follows constant returns to
scale (CRS). This means that there are no economies of scale as the level of output changes,
specifically, an increase in the input results in a proportional increase in output. Banker,
Charnes, and Cooper (BCC) later extended the DEA-CCR method in 1984 to allow a variable
returns to scale (VRS) assumption. The model was known as the DEA-BCC (Banker et al.,
1984). Since then, DEA has become one of the most common performance evaluation
techniques used by experts in the management discipline.

It is important to note that the production frontiers produced by each model are different.



The information that one can infer from both models is limited to whether or not a DMU can
improve its performance relative to the set of other DMUs to which it is being compared. In
this regard, changing the set of DMUs in the analysis would likely change the relative efficiency
results (Cullinane and Wang, 2006).

3.2 Model Specification

DEA models can be classified into whether they are input and output-oriented. The input-
oriented DEA model tries to minimize the inputs of a DMU for producing a desired level of
output to be achieved. In contrast, the output-oriented DEA model maximizes the outputs while
keeping the input at a constant level. In general, input-oriented DEA focuses on operational and
managerial issues while output-oriented DEA is more associated with planning and strategy
(Cullinane et al., 2005).

This study utilizes the output-oriented formulation of the DEA-CCR and DEA-BCC
models because the inputs used in the study (e.g., port area and berth length) are impractical to
minimize. The infrastructure properties of these inputs have already been configured at a
constant level; hence, it is hard to provide recommendations on port area and berth length
reduction. More importantly, port managers are more interested in how much they can increase
their productions given the constraints they currently encounter (Kutin et al., 2017).

3.2.1 DEA-CCR

As presented in the previous section, DEA focuses solely on the relative efficiencies of each
port by comparing one DMU with all the other DMUs in the dataset considered. DEA can
therefore be described as data-oriented, as it derives efficiency evaluations directly from the
data, with minimal assumptions. The problem of obtaining the efficiencies can be expressed as
a task of fractional programming, but to apply it, DEA consists of solving linear programming
tasks for each DMU under evaluation (Marti¢ et al., 2009).

The objective of the linear formulation is to maximize the weighted relative efficiency of
one DMU by multiplying a combination of weights to each input and output. This formulation
ensures that the DMU is as efficient as possible. Seeking the weights is subject to the constraint
that (a) the calculated weighted efficiencies of the other DMUs in the set do not exceed one
when using the weights and (b) that each weight is positive (i.e., since they represent the relative
importance of an input or output).

Mathematically, we let R be the total number of DMUs in the analysis. For a selected
DMU which uses a combination of n inputs and m outputs, let x;i be the observed magnitude of
a j-type input for anentity i (x;i >0;j=1,2,3,...,n;i=1,2,3, ..., R) and yx be the observed
magnitude of a k-type output forentity i (yxi >0; k=1,2,3,...,m;1=1,2,3, ..., R). The basic
model for computing the relative efficiency score of a selected DMU p, given multiple input
and output factors, is given below:

maximize 6, = Y3 (wkYip)/ 2j=1(vXjp) (1)
subject to

YY)/ Xia(vixi) <1, i =1,2,3,.,0p, .., R (2)



U =&, k=123,...m (3)
v; = €, j=123,..,n (4)

where,

6, : relative efficiency of the pth DMU
: number of outputs

u, - weights assigned for output k

n . number of inputs

v; . weights assigned for input j

R :number of DMUs

e :asmall positive value

The objective function in (1) is the relative efficiency of the pth DMU expressed as the
ratio between the weighted sum of outputs and the weighted sum of inputs. The constraint in
(2) indicates that the calculated weights from (1) will produce a value of 6,, such that 0 < 8,, <1
for all the other R DMUs. The calculated weights u; and v; that satisfy (1)-(4) represents the
importance of each input and output for the selected DMU. It also makes sure that the inefficient
DMUs are inside the efficiency frontier.

If the efficiency score, 6,, is equal to one then the selected DMU has the maximum value
for 6, and is operating at the efficiency frontier. This means that there is no way for the DMU
to further increase its level of output given its current level of input. However, if the DMU
obtained an efficiency score of less than one, the DMU is deemed relatively inefficient. A DMU
is relatively inefficient when it can expand any of its outputs without changing any of its inputs
and without reducing the level of all its other outputs.

A DMU is said to operate under constant return to scale if an increase in the inputs
proportionately increases the outputs. The CCR model calculates the overall technical
efficiency wherein the pure technical efficiency and scale efficiency are aggregated (Marti¢ et
al., 2009).

3.2.2 DEA-BCC

The DEA-BCC or variable returns to scale model is the most important extension of the
CCR model (Banker et al., 1984). It considers the productivity of a DMU at the most productive
scale size, which may not be attainable for other smaller DMUs. The DEA-CCR model is only
appropriate when all DMUs are functioning at an optimal scale. The consideration of imperfect
competition, financial constraints, demand disparity, etc., may cause a DMU to not operate at
the optimal level. Therefore, the DEA-BCC efficiency score only measures pure technical
efficiency. It is similar to the CCR model but with an additional constraint introduced (Marti¢
et al., 2009)

§=1 Ac=1 (5)

where,
A : coefficient of linear combination

A DMU operates under variable returns to scale if an increase in the inputs does not
proportionately change the outputs. The BCC model ignores the impact of scale size and gives



the pure technical efficiency score. This is done by comparing DMUs of the same scale. In most
cases, the small units are qualitatively different from large units and a comparison between the
two may misrepresent the comparative efficiency.

Again, the DEA model can be output-oriented or input-oriented. In the input-oriented
model, an inefficient unit can become efficient by proportionately decreasing the inputs while
the outputs remain the same. It contracts the inputs as far as possible while controlling the
outputs. Meanwhile, in the output-oriented model, the inefficient unit can become efficient by
proportionately increasing the outputs while the inputs remain constant. The orientation of the
model determines the projection direction of the inefficient DMUs. For the CCR model, the
input and output measurements are always the same. For the BCC model, an input-oriented
model must be used to get input interpretations while an output-oriented model must be used
separately to get output interpretations.

3.2.3 Scale Efficiency

The technical efficiencies derived from both the DEA-CCR and DEA-BCC models are often
used to calculate scale efficiency for each DMU p (Cullinane and Wang, 2006). The scale
efficiency is defined as the ratio between the overall technical efficiency score (calculated from
DEA-CCR) and the pure technical efficiency score (calculated from DEA-BCC) of each DMU
in the analysis. It denotes the optimum degree to which the DMU is efficient, enabling
maximum outputs.

[Z]
E = p,CCR
SEp 6p,Bcc (6)
where,
SE, - Scale Efficiency score
Op.ccr : CCR efficiency score
0y cc : BCC efficiency score

Under the scale efficiency measure, for any DMU p, if SE}, = 1, then the DMU p is
considered scale efficient. This means that the current size of the operation is already at the
optimal point. Changes and modifications on its size will render the DMU less efficient. On the
other hand, if SE,, < 1, then this indicates that the firm is over/under-dimensioned (Ulas and

Keskin, 2015).
4. METHODOLOGY

Given the diversity of ports and complexity of management in the local setting, it is necessary
to restrict the scope of analysis to a limited number of ports in the Philippines. In this study, all
DMUs are domestic seaports in the Philippines. Table 1 lists the names of the chosen ports
along with their locations and respective island group.

The three main island groups of the Philippines (Luzon, Visayas, and Mindanao) were
considered for this study. Only the baseports classified by the Philippine Ports Authority (PPA)
from the three regions were examined because they are the main hub ports in their respective
areas. These ports also hold the regional administration office known as the Port Management
Office (PMO). PMOs operate and manage other ports and terminals with areas of jurisdiction
separate and independent from the baseport. PMOs serve as the local authority for the area
under their control. This study identified six baseports from Luzon, four baseports from Visayas,



and nine baseports from Mindanao, putting the total number of DMUs considered in the study
at 19.
Table 1. Ports Considered

Port Name Location / PMO Island Group
Calapan Mindoro Luzon
Lamao Bataan Luzon
Legazpi Bicol Luzon
Lucena Quezon Province Luzon
Masbate Masbate Luzon
Puerto Princesa Palawan Luzon
Banago Negros Occidental Visayas
Dumaguete Negros Oriental Visayas
Ormoc Western Leyte Visayas
Tagbilaran Bohol Visayas
Cagayan De Oro Misamis Oriental Mindanao
Dapitan Zamboanga del Norte Mindanao
Iligan Lanao del Norte Mindanao
Makar Wharf SOCSARGEN Mindanao
Nasipit Agusan del Norte Mindanao
Ozamiz Misamis Occidental Mindanao
Sasa Davao Mindanao
Surigao Surigao Mindanao
Zamboanga Zamboanga Mindanao

The total number of DMUSs in the analysis is critical. Using a small sample of DMUs is
more likely to skew the results and produce a high proportion of efficient units. Cooper et.al
(2000) suggest using the following equation for the determination of minimum sample size:

N = max {m x s,3(m + s)} (7

where,
N : minimum sample size of DMUs
m: number of inputs
s . number of outputs

Using (7), it can be verified that the 19 DMUs selected are sufficient for the analysis that utilizes
two inputs and three outputs. Since the technical efficiencies derived from DEA are relative,
using the maximum available sample size allows for an empirical yet meaningful generalization
of the results and improves the accuracy of the efficiency estimates for each DMUs (Cullinane
and Wang, 2006).

In terms of the variables, a common feature of port benchmarking studies is the use of
operational data (Kutin et al., 2017). The inputs and outputs were selected through logical
justification and related literature. This study used input variables based on land and facilities
available in the port because these are instrumental in reflecting the possible capacity and
handling power to move the goods in the port sector. The berth is the area in the port that
facilitates the stationing of vessels alongside the pier, quay, or wharf. The port area is
considered to be the total area where all activities in the port are done, including waiting areas,



storage areas, passenger terminals, etc.

The chosen output parameters consist of cargo throughput, passenger count, and the
number of ship calls. These were selected as they are directly affected by the input parameters.
They are also consistent with the targets of the maritime industry development plan programs
(Maritime Industry Authority, 2018). The output parameters essentially require that the
baseport to be analyzed should cater to both passenger and cargo demand.

The data used in this study are secondary in nature. Information regarding the port’s berth
length and total area were derived through correspondence with each PMO office. The values
of cargo throughput, passenger count, dwell time, and ship calls were acquired from the 2019
annual statistics report of the PPA. Further consideration is the availability of the analysis
parameters selected for this study as given in Table 2:

Table 2. Compilation of Input and Output Variables

Input Output
Total Berth Length Cargo Throughput
Total Port Area Passenger Count
Ship Call

5. RESULTS AND DISCUSSION

Parameter data were extracted from the 2019 PPA statistical report and consultations and
communications with the different port operations divisions of the PMOs. Each DMU was
modeled using the output-oriented DEA-CCR and output-oriented DEA-BCC. Their
corresponding scale efficiencies were also acquired. Models were implemented using the DEA
Solver LV8 (Cooper et.al, 2000) and DEAP 2.1 program (Coelli, 2003). Results are consistent
in both implementation and yielded the same efficiency scores.

Table 3 shows the DEA-CCR score of each DMU. According to the model, ports that
obtained a score of 1.00 will be treated as efficient, and ports with less than 1.00 will be treated
as inefficient. The ports deemed to be efficient are Calapan, Tagbilaran, Cagayan de Oro, and
Ozamiz. These ports are classified as efficient particularly in terms of input/output
configuration as well as the size of operations. The fifteen other ports are found to be inefficient
as they have CCR scores of less than one, with Iligan having the lowest score at 0.1359. These
ports are experiencing inefficiencies possibly due to managerial underperformance or are not
operating at an optimal scale. The average overall technical efficiency is found to be 0.659 or
at 65.9% percent level. This means that the overall output can be further expanded by 34.1%
for the same set of input quantities if all ports were as efficient as the benchmark ports identified
by the DEA.

To better understand the source of inefficiencies, the overall technical efficiency was
decomposed into two mutually exclusive and non-additive components: pure technical
efficiency and scale efficiency (Kumar and Gulati, 2008).

The pure technical efficiency scores from the DEA-BCC analysis are also shown in Table
3. The average pure technical efficiency is found to be 0.7765 which tells that the ports can
further increase the outputs by 22.4% under the efficiency frontier of the output-oriented DEA-
BCC model. Seven out of the nineteen ports got a score of 1.0 and are classified as efficient and
properly managed. These are Calapan, Lamao, Legazpi, Masbate, Tagbilaran, Cagayan de Oro
and Ozamiz. Comparing to the results of the DEA-CCR, the ports of Lamao, Legazpi, and
Masbate are considered efficient if the average pure technical efficiency is only considered.
Ports with scores equal to one serve as the benchmark ports and depict best practices. The other
twelve ports are classified as inefficient as they fall below the BCC frontier. These may imply



that these ports have room for improvement in their management strategies.

Table 3. Overall Technical Efficiency Score (CCR), Pure Technical Efficiency Score
(BCC), Scale Efficiency (SE), and Return to Scale of each DMU

DMU CCR score BCC score SE score Return to Scale
Calapan 1 1 1 Constant
Lamao 0.5738 1 0.5738 Increasing
Legazpi 0.7932 1 0.7932 Increasing
Lucena 0.2944 0.3057 0.9630 Constant
Masbate 0.6407 1 0.6407 Increasing
Puerto Princesa 0.6038 0.6726 0.8977 Constant
Banago 0.3141 0.3569 0.8801 Increasing
Dumaguete 0.5525 0.7116 0.7764 Constant
Ormoc 0.5847 0.7208 0.8112 Increasing
Tagbilaran 1 1 1 Constant
Cagayan De Oro 1 1 1 Constant
Dapitan 0.5732 0.8268 0.6933 Increasing
Iligan 0.1359 0.1435 0.9470 Increasing
Makar Wharf 0.902 0.9252 0.9749 Increasing
Nasipit 0.7879 0.8571 0.9193 Increasing
Ozamiz 1 1 1 Constant
Sasa 0.8278 0.8325 0.9944 Increasing
Surigao 0.4499 0.5069 0.8876 Increasing
Zamboanga 0.4822 0.8946 0.5390 Constant

MEAN 0.6587 0.7765 0.86

In terms of scale efficiency scores, the average scale efficiency is found to be 0.86. Four
ports—Calapan, Tagbilaran, Cagayan De Oro, and Ozamiz—were identified to already have
the optimal size of operations by having scale efficiency scores equal to one. The other ports
got scale efficiency scores less than 1.0 with Zamboanga having the lowest score at 0.539. This
means that these ports are experiencing scale inefficiencies. Scale inefficiencies can be
furthered characterized by the type of return to scale.

The last column of Table 3 summarizes information about the return to scale property of
the DMUs. A port can have increasing returns to scale, constant returns to scale, or decreasing
returns to scale. If a port is operating with either increasing or decreasing returns to scale, then
it can further improve its efficiency by operating within CCR (Igbal and Awan, 2015).
Increasing returns to scale occur when the increase in outputs is faster than the growth of inputs.
Decreasing returns to scale occur when the increase in outputs is slower than the growth of
inputs.

Eleven ports are facing increasing returns to scale and eight ports are deemed to have
constant returns to scale. For ports that are operating at an increasing returns to scale, reducing
their outputs while improving and expanding their inputs will significantly result in a more
efficient system. This means that for these ports, demand can be diverted to other servicing
ports to improve efficiency. They also have the option to expand their facilities to have a
constant return to scale. Returns to scale can also be constant when the growth of inputs and
outputs are similar. These ports are at the CCR and BCC efficient frontiers. They are at the
highest productivity and have reached their optimal size (Huguenin. 2012).

The ports of Calapan, Tagbilaran, Cagayan de Oro, and Ozamiz are all efficient regardless
of the DEA model. This indicates that these ports are properly managed and operating at the
optimal scale. CCR and BCC classifications can vary per DMU as with Lamao, Legazpi, and



Masbate. This result is not surprising since the DEA-CCR provides information on the
aggregated pure technical and scale efficiency while DEA-BCC only focuses on pure technical
efficiency. Contrary to the CCR classification, Lamao, Legazpi and Masbate are efficient ports
under the BCC frontier which implies that these ports have a scale problem and the inefficiency
due to poor management is eliminated. The other ports that were not mentioned are consistently
inefficient. This means that they are located below the efficiency frontiers and that the ports
still have room for improvement relative to the efficient ports. Improving management and the
scale of operations can be done to achieve an increase in efficiency.

Table 4 presents the calculated weighted output parameters for each model used in the
analysis. This gives port managers an idea on where to focus their efforts in improving their
port’s efficiency. The weighted outputs can be used to identify the most important output
parameters in determining each port’s efficiency. For example, when considering the DEA-
CCR model for baseport Lamao, the total cargo throughput has the most weight, followed by
the number of ship calls, while the total passengers have zero weight. This suggests that in the
case of baseport Lamao, the most effective way of increasing efficiency is prioritizing to
increase the total cargo throughput and then total number of ship calls. On the other hand, using
the same model for the case of port Puerto Princesa, the most effective way of increasing their
efficiency scores is putting all efforts in increasing annual cargo throughput.

Table 4. Calculated Weighted Output Parameters for each Model

CCR (CRS) Model BCC (VRS) Model
U4 X Shi U, x Total U4 x Shi U, x Total
My Callls/Nuth))er 2Cargo g3 x Total Callls/NumlEer 2Cargo 1;3 x Total
of Vessels Throughput assengers of Vessels Throughput assengers

Calapan - - 1.0000 1.0000 - -
Lamao 0.3605 0.6395 - 0.3447 0.6553 -
Legazpi - 1.0000 - - 1.0000 -
Lucena 0.9075 0.0925 - 0.9305 0.0695 -
Masbate 0.7603 0.2397 - 0.7623 0.2377 -
paerto . 1.0000 i i 1.0000 i
Banago 0.2913 0.7087 - 0.2670 0.7330 -
Dumaguete 0.7655 0.2345 - 0.8167 0.1833 -
Ormoc - 0.5073 0.4927 - 0.2406 0.7594
Tagbilaran - 1.0000 - 0.5498 0.4502 -
cosyanDe | g 0346 0.9654 i i 0.9471 0.0529
Dapitan 0.7091 0.2909 - 0.6614 0.3386 -
Iligan - 1.0000 - - 1.0000 -
Makar

Wharf - 1.0000 - - 1.0000 -
Nasipit - 1.0000 - - 1.0000 -
Ozamiz 0.7878 0.2122 - 0.5942 0.4058 -
Sasa - 1.0000 - - 1.0000 -
Surigao 0.6695 0.3305 - 0.6719 0.3281 -
Zamboanga - 0.7284 0.2716 - 0.3413 0.6587

The next important step for port managers is knowing how much they should increase their
outputs to attain the same level of efficiency as the ports in the frontier. Using DEA, target
values were also calculated and are presented in Tables 5 and 6. These values were derived by
projecting the efficiency scores of the inefficient DMUs into a hypothetical DMU operating in



the established efficiency frontier.

Table 5. Target Values for Ports to be CCR (CRS) efficient

DMU Ship Calls/Number of Vessels Total Cargo Throughput (tons) Total Passengers
Current Target Diff.(%) Current Target Diff.(%) Current Target Diff.(%)
Calapan 20,155 20,155 - 44,734 44,734 - | 5,607,982 | 5,607,982 =
Lamao 792 1,380 74.27 123,571 215,352 74.27 107,421 396,714 269.31
Legazpi 1,417 5,431 283.26 753,360 949,809 26.08 122,040 1,713,061 1,303.69
Lucena 5,803 19,708 239.62 126,285 428,889 239.62 921,793 5,566,599 503.89
Masbate 4,532 7,074 56.08 305,268 476,465 56.08 1,074,532 2,067,418 92.40
Pqerto 1,251 14,900 1,091.06 1,573,430 2,605,929 65.62 188,378 4,700,013 2,394.99
Princesa
Banago 1,814 5,776 218.42 320,034 1,019,050 218.42 219,498 1,710,896 679.46
Dumaguete 12,119 21,933 80.98 792,993 1,435,175 80.98 2,185,898 6,401,397 192.85
Ormoc 4931 8,596 74.33 441,251 754,695 71.04 1,486,794 2,542,944 71.04
Tagbilaran 11,022 11,022 - | 1,927,676 | 1,927,676 - | 3,476,726 | 3,476,726 .
g‘:(g)aya“ De 2,727 2,727 - | 6,683,369 | 6,683,369 - | 1,157,292 | 1,157,292 -
Dapitan 4,110 7,170 74.46 360,104 628,223 74.46 866,306 2,126,925 145.52
Tligan 498 4,553 814.33 289,735 2,132,310 635.95 129,690 1,500,249 1,056.80
%il;?t{ 1,226 2,073 69.12 3,594,327 3,984,711 10.86 27,749 827,424 2,881.82
Nasipit 807 4,729 486.03 1,251,555 1,588,426 26.92 415,845 1,528,208 267.50
Ozamiz 17,192 17,192 - 932,013 932,013 - 3,504,805 3,504,805 -
Sasa 777 4,790 516.51 3,880,318 4,687,537 20.80 7,156 1,695,317 23,590.85
Surigao 4,443 9,875 122.26 468,618 1,041,529 122.26 1,061,229 2,967,210 179.60
Zamboanga 10,149 21,845 115.25 2,567,770 5,325,242 107.39 3,322,540 6,890,543 107.39
Table 6. Target Values for Ports to be BCC (VRS) efficient
DMU Ship Calls/Number of Vessels Total Cargo Throughput (tons) Total Passengers
Current Target | Diff.(%) Current Target | Diff.(%) Current Target Diff.(%)
Calapan 20,155 20,155 - 44,734 44,734 - 5,607,982 5,607,982 -
Lamao 792 792 - 123,571 123,571 - 107,421 107,421 -
Legazpi 1,417 1,417 - 753,360 753,360 - 122,040 122,040 -
Lucena 5,803 18,981 227.09 126,285 413,061 227.09 921,793 4,867,367 428.03
Masbate 4,532 4,532 - 305,268 305,268 - 1,074,532 1,074,532 -
Pu_erto 1,251 10,304 723.66 1,573,430 2,339,401 48.68 188,378 3,275,965 1,639.04
Princesa
Banago 1,814 5,083 180.21 320,034 896,754 180.21 219,498 1,514,607 590.03
Dumaguete 12,119 17,032 40.54 792,993 1,114,449 40.54 2,185,898 4,140,483 89.42
Ormoc 4,931 7,220 46.42 441,251 612,152 38.73 1,486,794 2,062,644 38.73
Tagbilaran 11,022 11,022 - 1,927,676 1,927,676 - 3,476,726 3,476,726 -
giﬁaya“ De | 5727 2,727 - | 6,683,369 | 6,683,369 - | 1,157,292 | 1,157,292 -
Dapitan 4,110 4,971 20.94 360,104 435,518 20.94 866,306 1,248,318 44.10
Iligan 498 4,968 897.53 289,735 2,018,467 596.66 129,690 1,559,575 1,102.54
%il;?; 1,226 2,437 98.76 3,594,327 3,884,859 8.08 27,749 879,459 3,069.34
Nasipit 807 5,196 543.86 1,251,555 1,460,188 16.67 415,845 1,595,035 283.57
Ozamiz 17,192 17,192 - 932,013 932,013 - 3,504,805 3,504,805 -
Sasa 777 4,886 528.88 3,880,318 4,661,128 20.12 7,156 1,709,079 23,783.17
Surigao 4,443 8,765 97.27 468,618 924,431 97.27 1,061,229 2,509,564 136.48
Zamboanga 10,149 12,738 25.51 2,567,770 2,870,157 11.78 3,322,540 3,713,811 11.78




The highlighted ports in each table represent the benchmark ports identified by the DEA
model used in the analysis. These ports have the same current and target outputs, which means
that they are already operating at the efficiency frontier. It can also be observed that the output
parameters with the highest weights presented in Table 4 have the lowest percentage difference
between the current and the target output values. This is consistent with the recommendation
that port managers focus on these output parameters, i.e., they can reach a more efficient state
with the least amount of change.

Combining the data in tables 4, 5, and 6, the port managers can now formulate a strategic
plan to increase the efficiency of their respective ports. For example, in the case of baseport
Lamao, around 64% of the overall effort to increase port efficiency should focus on reaching
the target goal of 215, 352 metric tons of annual cargo throughput, while the remaining 36%
should focus on increasing the number of ship calls to from 792 to 1380 in the next year.

Figure 1 is the illustration of CCR and BCC scores as data pairs on a two-dimensional
graph. The graph can be interpreted to easily understand the relative role of pure technical
efficiency and scale effects in relation to the scores (Baran and Gdrecka, 2015). The graph is
divided into four regions by the vertical and diagonal dashed lines. The vertical line denotes the
mean DEA-BCC score (0.7765) and the diagonal line is a line with a slope that represents the
average scale efficiency (0.8574).

The first quadrant (upper right) shows that Sasa, Nasipit, Makar Wharf, Ozamiz,
Tagbilaran, Cagayan de Oro, and Calapan have high pure technical efficiency and high scale
efficiency. This indicate that the resource utilization of these ports, whether in technique or
scale, reaches the fittest. These implies that the ports can exploit their facilities well and can
also serve large amounts of demand. No further recommendations can be made for these ports,
and they simply need to maintain their current operations.

Five ports are located at the second quadrant (upper left) namely: Iligan, Lucena, Banago,
Surigao, and Puerto Princesa. This port has a relatively high scale efficiency but relatively low
pure technical efficiency. This means that the ports can accommodate a larger number of
passengers and cargos with limited performance, but do not efficiently operate their resources.
Better port management will help increase their efficiencies. Capacity utilization of the berthing
space should be increased as well as the optimization of the ship dwell times. This can be done
by implementing route capacity measurements and appropriate time tabling techniques.
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Figure 1. Graphical Illustration of the Efficiency Scores




The ports at the lower-right part are Dapitan, Zamboanga, Masbate, Lamao and Legazpi.
They have high pure technical efficiency but low scale efficiency. These ports manage their
facilities well, but they are subject to scale effects because of their inability to accommodate
the present demand. Mitigating strategies include the expansion of the port and construction of
more berthing spaces to increase the ship capacity of the port. On the demand side, passengers
and cargo can be diverted to other less congested ports that also provide the same services.

Lastly, the ports on the lower-left part are Dumaguete and Ormoc. They have relatively
low pure technical efficiency and low scale efficiency. This means that the ports can only
accommodate low demand with inefficient resource utilization. Therefore, these ports need to
improve their overall competitiveness and efficiency by upgrading the port and managing their
resources better.

6. CONCLUSIONS AND RECOMMENDATIONS

The non-parametric approach called the Data Envelopment Analysis was applied in this study
to measure the relative efficiencies of selected nineteen PPA base ports in the Philippines. Six
base ports from Luzon, four base ports from Visayas, and nine base ports from Mindanao were
identified to be the Decision Making Units (DMU) for this study. The chosen input data were
the total port area and the total number of berthing spaces, while the chosen output data were
the total passenger count, total cargo throughput, and total number of ship calls. These were
extracted from the 2019 port statistics data of PPA and requested from the various port
management offices.

The results of the DEA-CCR and DEA-BCC models show that the average efficiency
scores are 0.6587 and 0.7765, respectively. The ports of Calapan, Tagbilaran, Cagayan de Oro,
and Ozamiz demonstrated the best performance in both models. The ports of Lamao, Legazpi
and Masbate achieved pure technical efficiency but are classified as inefficient under DEA-
CCR. The other ports were consistently classified as inefficient regardless of the model. The
scale efficiencies of the ports were also identified for analysis. The returns-to-scale approach
was used to assess whether each port is in increasing, decreasing, or constant returns to scale.
Increasing returns to scale was found on eleven ports.

The findings of this study can provide port masters with insights into resource
allocation and port operation optimization. For technically inefficient ports, increasing the
number of goods and people that use the port thru proper management can be prioritized so that
the facilities can be fully utilized. For scale inefficient ports, modernizing the current state of
the ports by either increasing labor or improving infrastructure can address the inefficiency.

Possible future development for this study is to acquire more data that can be used as
input and/or output variables. The increase of input and output metrics will increase the
accuracy of the results. Future studies can explore other input variables such as labor, equipment,
and capital, among others. The paper has not used labor as an input variable since it tends to
correlate with output negatively. This negative correlation is especially true for ports with low
mechanization and automation, which usually have a higher number of employees and
relatively low output (Lirn and Guo, 2011). Using port operational data such as loading and
unloading efficiency and financial information such as yearly investments, revenues and costs
can also help provide a better analysis and efficiency measurement of the DMUs. Acquiring
panel data will enable the use of the DEA-Malmquist Productivity Index (DEA-MPI). This
method examines the changes in the efficiency of a port between two time periods. Another
efficiency measurement such as the Stochastic Frontier Analysis (SFA) can be performed to
improve the research.
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