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Abstract:  This study evaluates the METANET model's capability to simulate traffic 15 
dynamics under normal and adverse weather conditions, confirming its reliability in 16 
forecasting real-world traffic behavior, particularly in regions with frequent rainfall. 17 
Calibration and validation results demonstrate METANET's adaptability, with critical 18 
parameters such as free-flow speed, capacity, and critical density significantly 19 
influencing performance. Adjusting these parameters enhances METANET's 20 
responsiveness to weather-induced traffic flow variations, providing a robust 21 
foundation for developing weather-responsive traffic management systems. The study 22 
successfully replicates METANET’s predictive performance using traffic data from 23 
Bangkok, Thailand, marking the first application of the model in this region. Findings 24 
suggest that accounting for traffic flow heterogeneity only marginally improves 25 
accuracy, likely due to the limited study area and its relatively homogeneous traffic 26 
conditions. Validation results indicate that weather-specific modeling outperforms 27 
general models, effectively capturing congestion onset and dissipation while accurately 28 
predicting spatiotemporal traffic variations. Weather-adaptive METANET models 29 
demonstrate improved accuracy in tracking congestion waves and replicating flow-30 
density relationships under varying rainfall intensities. The research underscores the 31 
model’s sensitivity to key traffic parameters, emphasizing the necessity of 32 
incorporating weather considerations into traffic flow modeling for more precise 33 
predictions. 34 

 35 

1. INTRODUCTION 36 

Weather conditions impact various road conditions, including traffic demand, safety, 37 
operations, and flow. This paper proposes including rainfall factors in macroscopic 38 
traffic flow modeling, calibrated and validated using field data. This model aims to 39 
calculate the effects of rainfall on traffic flow dynamics, which has potential 40 
applications for traffic control and operations. 41 

Macroscopic traffic flow theory is used to predict states of traffic at any segment of a 42 
highway based on initial conditions. The model treats the flow of traffic as a fluid rather 43 
than focusing on individual vehicles, using three main variables - average speed, 44 



 

density, and flow - to describe traffic stream characteristics. Macroscopic traffic flow 45 
models are classified as first-order, second-order, or higher-order models, depending 46 
on the number of differentials. In literature, two widely used macroscopic models are 47 
used. The first is the CTM or the Cell Transmission Model, and the other is the 48 
METANET model.  In a systematic review of well-known papers on macroscopic 49 
traffic flow modeling by Wang et. al (Wang et al., 2022), they looked into 32 papers, 50 
of which 80 % either used CTM or METANET.  51 

The Lighthill–Whitham–Richards (LWR) model (Lighthill & Whitman, 1955; 52 
Richards, 1956) is a popular first-order model, employing a single PDE in expressing 53 
the flow following the law of conservation of vehicles. In a well-known paper by 54 
Daganzo (Daganzo, 1994), he introduced the Cell Transmission Model (CTM), which 55 
represents the road as a series of discrete cells, each of which can hold a certain number 56 
of vehicles. Vehicles move between cells according to specific rules, allowing the 57 
model to capture traffic flow, congestion, and other traffic dynamics in a simplified yet 58 
effective manner. It is a discretized version of LWR, which can be solved analytically 59 
due to its piecewise linear Fundamental Diagram (FD). While both can determine the 60 
uncongested and congested side of the FD representing normal traffic and congestion, 61 
they cannot replicate complex phenomena. Examples of this are the capacity drop 62 
phenomenon and scattering in the q-k (flow density) diagram.. Higher-order models 63 
have solved these limitations. Several approaches have been developed to enhance the 64 
LWR model and its ability to simulate complex traffic phenomena. 65 

The Payne-Witham (PW) Model, introduced by Payne (Payne, 1971) and Whitman 66 
(Whitman, 1974), derives the equation for acceleration using the expanded Taylor 67 
series of a car-following model. It offers insights into complex traffic phenomena such 68 
as scattering in the flow-density diagram. A discretized version of this model, 69 
METANET, was proposed by Messmer and Papageorgiou (Messmer & Papageorgiou, 70 
1990)  and is widely used for large-scale network applications and control purposes 71 
(Kontorinaki et al., 2017; Kotsialos et al., 2002; Papageorgiou et al., 2010; Spiliopoulou 72 
et al., 2014, 2017). The METANET model is a macroscopic discrete second-order 73 
model that was firstly applied to the Boulevard P ́eriph ́erique in Paris. The name 74 
METANET, acronym for “Mod`ele d’E ́coulement de Trafic sur Autoroute NETworks” 75 
in French which translates to "Traffic Flow Model on Highway Networks", was firstly 76 
associated with the simulation tool for the freeway network, but it is now adopted to 77 
generically indicate the second-order traffic flow model. 78 

In the study of Spiliopoulou et al. (2014), which compared traffic flow modeling using 79 
the Cell Transmission Model and METANET, they showed that the second-order 80 
model METANET performed better than CTM. Kontorinaki et al. (2017)  also conclude 81 
that METANET outperforms other macroscopic models such as CTM and LWR and 82 
their extensions. In a comprehensive benchmarking of macroscopic traffic flow models 83 
conducted by Mohammadian et al. (Mohammadian et al., 2021), they compared the 84 
performance of the following models: LWR, LWR with extensions, CTM, CTM with 85 
extensions, METANET, Gas-Kinetic Theory, and Generic Second-Order Modeling. 86 
The models were assessed for their effectiveness in tracking congestion. Their findings 87 
indicated that METANET demonstrated the best performance overall, particularly 88 
excelling in modeling ramp-merging congestion. 89 



 

This paper focuses on the METANET model, a discretized and improved variation of 90 
the LWR model combining the characteristics of the PW model. METANET is chosen 91 
for its three distinct dynamic functions that predict key traffic flow parameters: flow, 92 
speed, and density. Its form and convenient discretization intervals allow to facilitate 93 
the integration of field-collected data. The METANET model's clear analytical 94 
properties, including a specific space-time form with improved differentiable functions, 95 
make it suitable for real-time freeway traffic control operations. METANET has been 96 
applied across a range of areas, including Freeway Traffic Flow Modeling, where it has 97 
been utilized to model freeway traffic dynamics (Kontorinaki et al., 2017; 98 
Mohammadian et al., 2021; Spiliopoulou et al., 2017; Wang et al., 2022), variable speed 99 
limit control which was applied to manage and control variable speed limits (Wang et 100 
al., 2021), ramp metering where the model has been used to optimize strategies for 101 
metering of ramps (Kan et al., 2016; Wang et al., 2014, 2021), and traffic state 102 
estimation and prediction which has been employed for estimating and predicting traffic 103 
states (Wang et al., 2022; Zhao, 2021). 104 

The weather-specific METANET model is calibrated and integrated into a validation 105 
model using field data. This paper makes four main contributions: First, it considers 106 
different weather conditions for calibration and applies them to various macroscopic 107 
traffic variables during validation, whereas, to our knowledge, previous studies have 108 
typically focused only on the applicability of weather-specific parameters and not on 109 
comparing them with other weather conditions. Second, it utilizes real field data rather 110 
than simulation data to provide clear quantitative results, demonstrating the significant 111 
impact of weather on freeway traffic dynamics. Lastly, it demonstrates the effects of 112 
considering multiple fundamental diagrams for every section of the highway.  113 

2. METHODOLOGY 114 

 115 
This paper focuses on the METANET model, a widely used macroscopic traffic flow 116 
model shown to outperform other models like the Cell Transmission Model (CTM) in 117 
accurately tracking freeway congestion. METANET is based on a discretized, enhanced 118 
version of the Payne-Witham model. It predicts key traffic parameters (flow, speed, and 119 
density) through three dynamic functions, making it suitable for real-time freeway 120 
traffic control. This paper aims to calibrate and validate METANET using a section of 121 
Bangkok’s Burapha Whiti Expressway, which includes ramps and is subject to 122 
recurring congestion. 123 

 124 
METANET divides the highway into sections and computes traffic states at each 125 
discrete time step. It uses equations involving density, flow, and speed, enhanced by 126 
additional terms for accurate on-ramp merging and lane-drop modeling. Calibration 127 
aligns model predictions with actual traffic data, while validation tests model 128 
performance on an independent dataset, focusing on average speed and flow as 129 
performance metrics. This process is optimized using the Nelder-Mead algorithm, 130 
selected for its efficiency in achieving accurate parameter estimates.  131 

 132 
Traffic data, including flow, speed, and density, were collected every five minutes 133 
throughout 2022, covering both dry and rainy conditions. Two days of data were used 134 
for calibration (one with rain, one without), and six additional days were used for 135 
validation, ensuring no incidents or sensor failures during the study period. 136 



 

 137 
METANET employs the discretization and enhancement of the form of the Payne 138 
model. It treats the highway section as continuous numbered sections i (section i is 139 
downstream of section i−1), each with specific lengths Li , and lane numbers i. Time 140 
is subdivided into equal gaps of duration T. In every discrete time step, time k = 0, 1,..., 141 
K, METANET computes the density, flow, and speed for each section i using the 142 
equations: 143 
 144 

i(k+1) = i (k) + 
𝑇

L𝑖𝑖 
 [qi-1 (k) - qi(k)]                   (1) 145 

qi (k) = vi(k) i (k) 𝑖
                          (2) 146 

vi+1(k) = vi(k) +  
𝑇

𝐿𝑖
 vi (k) [ vi-1(k) - vi(k)] + 

𝑇

 𝜏
  [Ve (i(k)) - vi (k) ] - 

𝑣 𝑇[𝑖+1 (𝑘) − 𝑖 (𝑘)]

𝜏 𝐿𝑖[𝑖(𝑘) + κ]
       (3) 147 

 148 

Where the model parameters are a time constant (𝜏), an anticipation constant (𝜈), and a 149 
mode parameter (𝜅). Ve (i(k)) represents the fundamental diagram and is determined 150 
using the following equation: 151 

Ve (i(k)) = vf,i exp [- 
1

𝑎𝑖 
 (
𝑖(𝑘)

𝑐𝑟,𝑖 
 ) 𝑎𝑖]                     (4) 152 

where vf,i represents the free-flow speed, 𝑐𝑟,𝑖  represents the critical density 153 
corresponding to the maximum flow condition, and 𝑎𝑖  another model parameter. It 154 
must be noted that the average speed calculated must be at least vmin.  155 

For more accurate merging and lane-drop modeling, enhancements were proposed by 156 
Papageorgiou et al. (1989). Specifically, the model incorporates two additional terms 157 
to capture these effects better. One notable term addresses the on-ramp merging impact 158 
by adjusting the traffic flow dynamics for the influence of merging cars. The following 159 
term is then added 160 

−𝛿Tq𝜇 (k) vi (k)/ L𝑖𝑖
(𝑖(𝑘)  +  𝜅)  161 

into eq. (3) for the on-ramp segment. A further parameter 𝛿 is included, and q𝜇 162 
represents the number of vehicles entering the ramp. To include the consideration of 163 
the effects of lane-changing, the term  164 

−𝜑T∆ 𝑖(𝑘)  vi (𝑘)2/ L𝑖𝑖
𝑐𝑟,𝑖(𝑘) 165 

is included to eq. (3) for the consideration of the immediate section upstream when 166 
there is a dropping of lanes, a model parameter 𝜑 is further added where ∆ refers to 167 
the number of lanes that were dropped. 168 



 

At the change of geometric characteristics, such as the presence of ramps, the flow is 169 
separated into various sections that exit on the highway based on a defined turning rate 170 
βj(k). Additionally, for sections entering the change in highway geometry, a density 171 
downstream i(k+1) is required in eq. (3) to account for the influence of downstream 172 
traffic conditions. Given that bifurcations lead to two downstream sections, the 173 
following is used to determine the downstream density for section i at the bifurcation 174 
as proposed by Messmer & Papageorgiou (1990):  175 

i+1(k) =  
∑ 𝜇

2
𝜇𝜖𝑂𝑖

 (𝑘) 

∑ 𝜇𝜇𝜖𝑂𝑖
 (𝑘) 

                          (5) 176 

where i+1(k) represents the computed downstream density under consideration utilized 177 
in eq. (3) for section i. Meanwhile, 𝜌𝜇(k)  denotes the section density downstream of 178 
considered segment, where Oi is the set of sections which exits the highway. The 179 
quadratic average used in eq. (5) considers the potential congestion spillback to the 180 
section. The eq. (5) does not require any additional calibration parameters. For this 181 
study, the actual densities on off-ramps are given as boundary conditions to the model. 182 
Consequently, any increase in the density of the off-ramp directly affects the average 183 
speed of the upstream mainstream area through equations eq. (3) and eq. (5). For 184 
merging locations with on-ramps, the model incorporates the actual on-ramp flows as 185 
direct input, treating on-ramps as integrated parts of the sections rather than modeling 186 
them as separate entities. 187 

METANET modeling includes various parameters whose values can vary depending 188 
on factors like the network geometry, driver behavior, truck percentage, and weather 189 
conditions at different freeway sites. Therefore, the accuracy and reliability of these 190 
models depend on correctly specifying these parameter values. Calibration of the 191 
models is often necessary to ensure they are suitable for real-world applications while 192 
validation tests the accuracy of the model. 193 

 194 
2.1 Calibration and validation of models 195 

 196 
Before applying traffic models to practical applications like traffic monitoring and 197 
management, they must undergo calibration and validation using actual traffic data. 198 
Calibration adjusts model parameters to minimize the difference between predictions 199 
and observed data, ensuring the model accurately reflects current traffic conditions. 200 
Validation tests the calibrated model's predictive performance using an independent 201 
dataset, assessing its ability to predict future traffic. Both processes are critical: 202 
calibration without validation has limited value, as it only fits the model to a specific 203 
dataset without ensuring broader applicability. 204 

 205 
Calibration also estimates parameters not directly observable in the dataset, especially 206 
in higher-order models like METANET, which include empirical terms to enhance 207 
modeling capabilities. This process typically involves solving nonlinear systems 208 
through optimization techniques to minimize the difference between model outputs and 209 
actual data using a cost function. Parameter values are selected from an admissible 210 
range defined by prior experience and physical meaning. 211 

 212 
Validation uses a different dataset (e.g., from another day) within the same study area 213 
to compare model outputs with actual data, ensuring the model performs reliably across 214 



 

various traffic conditions and time periods. While flows are easier to model due to 215 
conservation equations, accurately predicting average speeds across highway segments 216 
remains challenging. 217 

 218 
Calibrating a least-squares optimization problem nonlinearly often has multiple local 219 
minima as illustrated by Ngoduy & Maher (2012) in the calibration of second-order 220 
traffic models using the continuous cross-entropy method, making gradient-based 221 
methods unsuitable. Spiliopoulou et al. (2017) demonstrated that different optimization 222 
techniques can arrive at solutions to the estimation problem for METANET. They have 223 
employed three commonly used optimization algorithms. The first is the Nelder-Mead 224 
(N-M) algorithm (Lagarias et al., 1998; Nelder & Mead, 1965) which is deterministic. 225 
The next one is the stochastic Genetic Algorithm (GA) (Whitley, 1994). Lastly, they 226 
also considered the cross-entropy method (Rubinstein & Kroese, 2004). All three 227 
algorithms were able to converge to a solution set. Nevertheless, their results show that 228 
the Nelder-Mead algorithm performs 257 times faster than the genetic algorithm and 229 
242 times faster than the cross-entropy method. This is an important finding since the 230 
computation time must be considered in traffic flow modeling, especially because it 231 
often involves real-time applications. Therefore, the Nelder-Mead Algorithm is used in 232 
this study for the determination of the parameters. The algorithm is also well-suited for 233 
finding acceptable local minima, or potentially even the global minima, in complex, 234 
multi-dimensional optimization landscapes. 235 

 236 
2.2 The Nelder-Mead algorithm 237 

 238 
The Nelder-Mead algorithm (Nelder & Mead, 1965) is a renowned algorithm for the 239 
optimization of multidimensional systems with unconstrained conditions. For this 240 
study, we have particularly adapted a version for constrained optimization as described 241 
by Spiliopoulou et al. (2014). This method is advantageous because it requires no 242 
derivative information, making it applicable for problems with nonlinear and 243 
discontinuous cost functions. 244 

 245 
The algorithm operates using a simplex with n number of dimensions and n+1 number 246 
of vertices. Each vertex represents a potential solution and has an associated cost 247 
function value. The Nelder-Mead method begins with an initial simplex and iteratively 248 
transforms it to increase the predictive accuracy at the vertices. In every iteration, the 249 
method will sort the solutions by their cost function values, calculate the centroid, and 250 
then update the solution by reflecting, expanding, or contracting the worst vertex. If 251 
these transformations do not yield improvements, the algorithm performs a shrinkage 252 
towards the best vertex, generating new vertices.  253 

 254 
The algorithm’s performance is influenced by the four parameters of σ for shrinkage, χ 255 
for expansion, ξ  for reflection, and Y for contraction. The recommended values for 256 
these parameters are 0.5, 2, 1, and 0.5, respectively (Spiliopoulou et al., 2014). The 257 
algorithm may sometimes perform many iterations without significant improvements. 258 
To address this, multiple restarts with a limited number of iterations can be used as a 259 
heuristic solution. This technique was employed in this paper by doing 5 runs for each 260 
calibration and comparing the respective performances. 261 
 262 
 263 

 264 



 

2.3 Measurement of performance 265 
 266 

In this context, measuring performance involves assessing key variables used to 267 
evaluate the results of model calibration. For macroscopic traffic flow modeling, the 268 
primary variables are flow in veh/hr, density in veh/km, and average speed in km/hr. 269 
The calibration process is compared against the actual dataset, which is also represented 270 
by these traffic flow variables. Therefore, evaluating calibration results based on these 271 
variables is natural. From the modeling results of other papers, it is advisable to focus 272 
on average speeds during the calibration procedure. This is because empirical 273 
observations suggest predicting flows is relatively straightforward due to the 274 
conservation law, even if speed matching is not perfect.  275 

 276 
Second, it has been found that if the modeled speeds match the actual speeds in the 277 
segment considered adequately, the flow predictions are generally satisfactory. Thus, 278 
focusing on speed matching is crucial and often more challenging. Lastly, measuring 279 
densities directly or modeling occupancies is difficult, with data often being incomplete 280 
or inaccurate.  281 

 282 
2.4 Test Network, Evaluation, and Traffic Data 283 

 284 
A highway network is graphically represented where links correspond to segments of 285 
the highway with consistent characteristics, such as uniform lane count, grade, and 286 
curvature. Nodes are used to indicate significant changes in the roadway's geometry 287 
including ramps and lane reductions. If a segment exhibits varying characteristics, it is 288 
divided into multiple links, each separated by a node. 289 

 290 
For computational modeling, the time horizon is divided into 5-second intervals. To 291 
ensure the stability of the numerical method, the length of each segment and the time  292 
interval must satisfy the celebrated Courant-Friedrichs-Lewy (CFL) condition (Courant 293 
et al., 1928; de Moura & Kubrusly, 2013; Sanz-Serna & Spijker, 1986). 294 

 295 
The study area considered for this paper is a segment of the Burapha Whiti Expressway 296 
in Bangkok, Thailand (station 12+400 to 19+500). This highway stretch includes on-297 
ramps and off-ramps. This part of the expressway was considered for the calibration 298 
and validation of the traffic flow model because of the presence of the ramps. This is 299 
also the segment of the highway nearest to the automatic weather station. Only this span 300 
of the highway was considered to make the effects of weather more pronounced as 301 
different parts of the highway far from the weather station may experience a different 302 
effect on the traffic flow in consideration of weather. To model the study area by use 303 
of the METANET model, the highway is represented with four nodes and three links. 304 
Each node represents an area with a change in geometric characteristics in the highway. 305 
The homogenous highway segments in between are denoted by links. Figure 1 displays 306 
the length, number of lanes, ramp locations, and the location of the microwave radar 307 
detectors represented by bullets. 308 

 309 
The dataset for this study was gathered at the Expressway Authority of Thailand, which 310 
operates country’s expressway system. It includes flow, speed, and density for each 311 
microwave radar station gathered every 5 minutes. It is observed that recurring 312 
congestion is evident in this area in the morning rush hours due to the presence of 313 
ramps. 2 days were selected for the calibration process, representing each for good and 314 



 

bad weather conditions representing the occurrence of rainfall during the gathering of 315 
data while 6 days were considered for validation (3 for each weather condition). It is 316 
important to note that the primary criterion for selecting these 8 days was that no 317 
incidents or detector failures occurred during the morning hours of 5–12 AM on the 318 
examined freeway stretch, conditions which could not be replicated by any traffic flow 319 
model. Figure 2.1 illustrates the detailed layout of this expressway and the locations of 320 
traffic sensors, represented by black dots. Data for analysis were collected in 2022, 321 
including days with and without precipitation. 322 
 323 
 324 
Figure 1  325 
 326 
Representation of the Study Area Considered in Burapha Whiti Expressway, Bangkok, 327 
Thailand. 328 

 329 

2.5 Novel Considerations 330 

This paper offers a comprehensive examination of macroscopic traffic flow modeling, 331 
focusing on both calibration and validation. Unlike previous studies, this research 332 
provides a more detailed analysis of model calibration, addressing critical aspects such 333 
as congestion tracking, capacity reduction, and the impact of weather conditions on 334 
prediction accuracy. It also includes extensive validation results from the same case 335 
studies, demonstrating that the METANET model accurately captures traffic flow 336 
dynamics, particularly concerning weather-specific conditions. 337 

Despite the significance of calibrating models with real traffic data for accurate 338 
application, there is a scarcity of research dedicated to model calibration and validation 339 
(Wang et al., 2022). Furthermore, the numerical computation of these models 340 
necessitates space-time discretization, making simplified and analytically tractable 341 
models highly beneficial for practical applications. 342 

This paper aims to address four key issues in traffic flow modeling: 343 

a. Traffic Flow Inhomogeneity: stretches of a highway usually exhibit inhomogeneity 344 
in traffic flow due to variations in key traffic flow parameters caused by several 345 
factors. To effectively model such variations, a model must consider different 346 
fundamental diagrams to represent a section of the highway with the same traffic 347 
and geometric characteristics.  348 



 

b. Congestion Tracking: this refers to a model’s ability to reproduce and predict when 349 
recurrent congestions emerge and propagate. A model should accurately reproduce 350 
the dynamics of congested traffic flow across spatial and temporal scales. The 351 
effectiveness of a model in reflecting real-world traffic is determined by how its 352 
structure is represented mathematically and by the parameters the model includes. 353 
When it is established, the focus shifts to calibrating parameters to ensure the model 354 
can accurately describe the entire evolution of traffic conditions. 355 

c. Effects of Weather on Macroscopic Traffic Flow Modeling: the performance of 356 
models that undergo calibrations under an unspecified weather event may not 357 
accurately represent the dynamics of traffic under different weather conditions in 358 
the same location, as key traffic parameters can be significantly affected. In the 359 
literature, only the work of Bie et al. (2017) specifically addressed and investigated 360 
the impact of weather parameters on traffic dynamics using METANET by 361 
introducing a weather factor into macro traffic state prediction. There is limited 362 
quantitative evidence on the broader impact of weather on model performance. This 363 
research will also address model parameter transferability, evaluating whether a 364 
calibrated model remains applicable to new datasets from different times or weather 365 
conditions, a topic that has not been fully explored in the literature. The focus will 366 
be on determining if a model developed with normal weather data can be effectively 367 
used for rainy or other adverse weather conditions, and vice versa. 368 

This research seeks to provide empirical evidence and enhance the understanding 369 
of these issues, which are currently supported more by qualitative observations than 370 
by quantitative analysis. 371 

3. RESULTS AND DISCUSSION 372 
3.1 Model Calibration Result under Normal Weather Conditions 373 

The different results of the calibrations are detailed in this section, focusing first under 374 
normal conditions. The data for June 9, 2022, was used for this. For not accounting for 375 
traffic flow heterogeneity, the specific results are illustrated in Figures 3.1 and 3.2. 376 
When considering for heterogeneity, the summary of the performance with specific 377 
results illustrated in Figures 3.3 through 3.4.  378 

The Nelder–Mead algorithm was employed for calibration with the following settings: 379 
ξ = 1, χ = 2, 𝛾 = 0.5, and σ = 0.5 (for further details, see Section 2.2). The algorithm 380 
was terminated based on either the convergence of the cost function or the convergence 381 
of the acceptable simplex, both when the tolerance level reaches 0.1, and after 500 382 
iterations. 383 

3.1.1 Not Considering Heterogeneity 384 

As discussed in the previous sections, not accounting for traffic flow inhomogeneity 385 
means that only 1 fundamental diagram (FD) is considered for the whole study area. 386 
Analysis of the measurement data revealed that the highway under consideration has 387 
the same geometric characteristics. 388 

Five calibration runs were conducted, and their performance is measured in terms of 389 
Mean Absolute Percentage Error (MAPE) for all the detectors. For each calibration run, 390 
the algorithm begins with specified initial values and randomly generates the next 391 



 

values based on these initial values. As described in the previous sections, the working 392 
simplex consists of n + 1 vertices, where n represents the number of parameters being 393 
calibrated. Using a physically reasonable initial vertex is preferable to expedite 394 
algorithm convergence. The results show that the best performance of all the calibration 395 
runs has a MAPE of 1.3943 %, 3.1043 %, and 5.7205 % for Detectors 13, 15, and 16, 396 
respectively. Nevertheless, the difference in the performance index between each run 397 
is not very significant, showing that the algorithm converges to almost the same optimal 398 
parameters. The best run will be used for further analysis. 399 

Table 3.1 presents the optimum parameter values calculated by the Nelder-Mead 400 
algorithm for the best calibration run. 𝜏 is the relaxation time parameter in second (s) 401 
which impacts how fast the average speed can cope with the speed in equilibrium that 402 
is computed in the FD, 𝜈 is an anticipation parameter in km2/h controlling the backward 403 
movement of the congestion wave, 𝛅 is a parameter controlling the merging mechanism 404 
in h/km, Φ is the parameter responsible for the dropping of lanes in h/km, 𝜅 is an 405 
additional model parameter in veh/km/lane, vmin is the minimum value of of the speed 406 
in km/hr, vf  is the free- flow speed in km/hr, ρcr refers to the critical density in veh/km, 407 
and qcap means the capacity in veh/hr.  408 

Table 3.1  409 
 410 
Optimal Parameter Values for June 9, 2022 (Normal Weather Condition) 411 
 412 

Model Parameters Value 

𝜏 (s) 8.121 

𝜈 (km2/h) 29.000 

𝛅 (h/km) 0.118 

Φ (h/km) 0.00021 

𝜅 (veh/km/lane) 2.337 

vmin (km/hr) 12.159 

vf (km/hr) 83.225 

ρcr (veh/km) 21.402 

qcap (veh/hr) 1781.210 

 413 
 414 
Figure 3.1 shows the congestion tracking performance on June 9 using only 1 415 
Fundamental Diagram. It illustrates the modeling outcomes for traffic flows and mean 416 
speeds.  It presents the calibration results for flows and speeds at all sensor locations in 417 
the study area. In these figures, black refers to actual measurements, while red refers to 418 
the modeling results. The calibrated flow models closely predicted the actual data at 419 
different locations, while the mean speed models effectively matched when the 420 
congestion was formed and when it dissipated. It is evident that flow prediction is more 421 
accurate than with mean speeds. This is due to the governing conservation equation for 422 
traffic volumes which is unaffected by free flow speeds. On the other hand, average 423 
speeds are greatly affected by these.  424 

 425 
It highlights the congestion events in the study area. The event started at detector 16 426 
and spread downstream to detector 13 at around 6:45 AM to 8:30 AM. The congestion 427 



 

event was accurately predicted in terms of spatiotemporal coverage. The results are 428 
considered satisfactory to be applied further. Note that the model has been arranged in 429 
downstream-to-upstream form. 430 

 431 
Figure 3.2 shows the space-time maps depicting the coverage of the dynamics of flows 432 
and average speeds in the highway section, in which the y-axis represents the spacing 433 
requirements in the traffic flow direction. When comparing it to the actual data, the 434 
models under calibration effectively captured traffic flow dynamics and reproduced the 435 
emergence and dissipation of the congestion wave.  436 

 437 
3.1.2 Considering Heterogeneity 438 

 439 
Considering traffic flow inhomogeneity means that a unique fundamental diagram (FD) 440 
is assigned to a segment of the highway. This highlights how variations in key traffic 441 
flow parameters reflect traffic flow differences across the study area.  442 

 443 
Five calibration runs were again conducted and their performance is measured in terms 444 
of MAPE for all the detectors. The same with the consideration of the same fundamental 445 
diagram for each section, the algorithm began with a similar initial value with the 446 
working simplex generated by randomly generating succeeding values around this 447 
initial point. The result shows best performance of all the calibration runs has a MAPE 448 
of 1.3152 %, 2.8912 %, and 5.5827 % for Detectors 13, 15, and 16, respectively. Again, 449 
the difference in the performance index between each run is not very significant which 450 
shows that the algorithm can converge to almost the same optimal values. 451 
 452 
The modeling result in terms of congestion tracking is shown in Figure 3.3.  It illustrates 453 
the modeling outcomes for traffic flows and mean speeds for June 9, 2022 considering 454 
heterogeneity. It presents the calibration results for flows and speeds at all sensor 455 
locations in the study area. In these figures, black refers to actual measurements, while 456 
red refers to the modeling results. The calibrated flow models in closely predicted the 457 
actual data at different locations, while the mean speed models effectively matched 458 
when the congestion was formed and when it dissipated. Flow prediction is more 459 
accurate than with mean speeds due to the conservation equation being the same as the 460 
result of considering only 1 fundamental diagram. 461 
 462 
Figure 3.4 shows the space-time maps depicting the coverage of the dynamics of flows 463 
and average speeds in the highway section, in which the y-axis represents the spacing 464 
requirements in the traffic flow direction. When comparing it to the actual data, the 465 
models under calibration effectively captured traffic flow dynamics and reproduced 466 
traffic congestion with appropriate strength over the relevant spatiotemporal range. This 467 
highlights the congestion events in the study area. The event started at detector 16 and 468 
spread downstream to the detector 13 at around 6:45 AM to 8:30 AM. The congestion 469 
event was accurately predicted in terms of spatiotemporal coverage.  470 
 471 
 472 

 473 
 474 

Figure 3.1 Results of Model Calibration of flows and speeds at Different Sensor 475 
Locations – June 9,1 FD 476 
 477 



 

 478 
 479 
 480 
Figure 3.2 Space-time evolution of flows and speeds along the study area (a) real 481 
data; (b) using 1 Fundamental Diagram 482 
 483 

     484 
        (a)                                                                              (b) 485 

Figure 3.3 Results of Model Calibration Flows and Speeds at Different Sensor 486 
Locations – June 9, 3 FD 487 
 488 



 

 489 
 490 

 491 
Figure 3.4 Space-time evolution of flows along the study area (a) actual data; (b) 492 
using 3 Fundamental Diagrams 493 

 494 
 495 

  (a)                                                                                      (b) 496 

3.2.1 Summary of results in consideration of traffic flow heterogeneity 497 



 

Table 3.2 summarizes the performance of the best calibration runs in terms of MAPE 498 
of speed in km/hr for all the detectors in consideration of traffic flow heterogeneity. 499 
The result shows that considering traffic flow heterogeneity in traffic flow modeling 500 
has an advantage, as shown in the decrease in the value of MAPE. This result is 501 
expected because of the increase in the number of degrees of freedom. Nevertheless, 502 
this difference between the performances is only slight and can be considered not 503 
significant. This is different compared to the result obtained by (Wang et al., 2022) 504 
where the consideration of different fundamental diagrams resulted in a significant 505 
difference in the performance indicators. This can be explained by their use of the 506 
whole expressway network which consisted of different sections with different 507 
geometric characteristics. In the current study, the span of the highway considered 508 
consists of the same number of lanes and other geometric characteristics which 509 
justifies that they can have the same fundamental diagram. With this, further 510 
application in the next sections will only consider one fundamental diagram for the 511 
traffic flow modeling in the considered study area. 512 

Table 3.2  513 
 514 
Performance summary for 5 calibration runs on June 9, 2022 considering traffic flow 515 
heterogeneity 516 
 517 
 518 

Heterogeneity 

Consideration 

Detector 

No.  

MAPE 

1 FD D13 1.3943 

D15 3.1043 

D16 5.7205 

3 FD D13 1.3152 

D15 2.8912 

D16 5.5827 

 519 
 520 
 521 
 522 
The space-time diagram for flows and speed using 1 and 3 fundamental diagrams shows 523 
that both models were able to predict when congestion forms and dissipates in the 524 
spatiotemporal range and that the speed and flow prediction matches are both 525 
acceptable for further application. Overall, the congestion tracking results under normal 526 
weather were very satisfactory.  527 
 528 
 529 
3.2 Model Calibrations under Rainy Weather Conditions 530 

 531 
The calibration process was also performed using measurement data on a rainy day on 532 
Sept 26, 2022. The same 5 runs are completed and the calibration performance in terms 533 
of MAPE for speed is determined. The same as the calibration for normal weather 534 
conditions, there is not a significant difference in the MAPE showing that the algorithm 535 
converges to almost the same parameter values. The result shows that the performance 536 
of the calibration has a MAPE of 3.1673 %. The resulting parameters of the model are 537 



 

shown in Table 3.4. It should be noted that there is a substantial decrease in the key 538 
traffic flow parameters of free-flow speed vf, critical density ρcr, and qcap. To illustrate, 539 
the free-flow speed, critical density, and capacity under normal weather conditions are 540 
83.2 km/hr, 21.4 veh/km, and 1781.2 veh/hr, respectively. Under bad weather 541 
conditions, it was reduced to 72.3 km/hr, 21 veh/km, and 1510 veh/hr. respectively. 542 
This is expected since it has been proven in the literature that weather conditions affect 543 
the key traffic flow parameters and are consistent with empirical observations. 544 
 545 
 546 
Table 3.4 547 
 548 
Optimal Parameter Values for September 26, 2022 (Bad Weather Conditions) 549 
 550 
 551 

Model Parameters Value 

𝜏 (s) 6.25 

𝜈 (km2/h) 27.99 

𝛅 (h/km) 0.20 

Φ (h/km) 0.00 

𝜅 (veh/km/lane) 10.00 

vmin (km/hr) 10.00 

vf (km/hr) 72.26 

ρcr (veh/km) 21.00 

qcap (veh/hr) 1510.71 

 552 
 553 
With the same study area which has homogeneous traffic flow, the modeling results 554 
exhibited similar calibration accuracy for flows on a rainy day compared to a non-rainy 555 
day. The model was still able to match the real flow and speed data including the 556 
tracking when congestion emerged and dissipated. However, the accuracy of speed 557 
calibration on rainy days was somewhat reduced.. The modeling results for flows and 558 
mean speeds are shown in Figure 3.5 while the space-time diagram for flows and speeds 559 
is illustrated in Figure 3.6. 560 

 561 
 562 
3.3 Validation of METANET under Different Weather Conditions 563 

 564 
Both the validation results for flows and speeds under different weather conditions are 565 
shown in this section. In each pair of the following validation processes, the optimal 566 
model parameters for each weather condition are used for a given date. It is first 567 
validated using calibration results from the same weather condition and another 568 
validation process is conducted using the calibration results from a different weather 569 
condition. Note that the accompanying parameters for a given weather condition are 570 
used (see Tables 3.1 and 3.3). 571 

 572 
For each type of weather, 3 days were used for validation purposes. For normal weather 573 
conditions, June 17, 2022; June 20, 2022; and June 29, 2022 were used. For bad weather 574 
conditions, June 30, 2022; October 6, 2022; and October 7, 2022, were validated. For 575 



 

a given day, the modeling spanned from the same time interval during the calibration 576 
process. 577 
 578 
 579 
Figure 3.5 Results of Model Calibration (Flows and Speeds) at Different Sensor 580 
Locations – Sept 26 581 
 582 

 583 



 

Figure 3.6 Space-time evolution of flows along the study area on Sept 26 (a) real 584 
data; (b) model 585 

 586 
  (a)                                                                                      (b) 587 

 588 
3.3.1 Validation on days with no rain 589 

 590 
The validation of the model under normal weather conditions for 3 days on June 17, 591 
2022; June 20, 2022; and June 29, 2022, is discussed in this section. Table 3.4 shows 592 
the detailed quantitative error measurement in terms of MAPE for comparison. 593 
Weather-specific means that the model parameters used in the validation are the 594 
calibration results under normal weather conditions (see Table 3.1). On the other hand, 595 
non-weather-specific means that the validation model parameters used are those 596 
derived under the calibration of a day with bad weather conditions (see Table 3.4). It is 597 
shown that weather-specific validation always performs better than the non-weather-598 
specific modeling results. To illustrate, the MAPE for June 17 using calibration results 599 
from June 9 with the same weather conditions is 5.0615% while the MAPE for June 17 600 
using calibration results from September 26 which has a different weather condition 601 
drastically increased to 14.0573 %. This result also proves that the modeling result is 602 
sensitive to the value of the key traffic flow parameters since it was found in the 603 
previous section that there is a significant decrease in the value of the said parameters 604 
under different weather conditions. It is worth noting that the validation results under 605 
the same weather conditions have less accuracy compared to the calibration. 606 
Nevertheless, the difference between weather-specific validation processes is very 607 
significant. It can be concluded that considering the weather in the validation process 608 
of METANET will be more helpful for further practical applications. 609 

 610 



 

For brevity, only the modeling results on June 17 are shown but the modeling 611 
performance for the rest of the days are already shown in Table 3.4. In terms of 612 
congestion tracking, weather-specific models were able to sufficiently track the 613 
occurrence and dissipation of the congestion as illustrated in Figure 3.7. This is not the 614 
case for non-weather-specific modeling depicted in Figure 3.8 which shows that the 615 
model was not able to replicate the congestion wave at around 6:30 AM. Figure 3.9 616 
further illustrates the better performance of the weather-specific modeling as shown in 617 
the space-time heat maps for both flows and speeds sufficiently predicting the 618 
spatiotemporal values compared to non-weather-specific results. 619 

 620 

Table 3.4 Summary of results of METANET validation under normal weather 621 
conditions in terms of MAPE (%) 622 
Date Weather-Specific Non-Weather-Specific 

June 17, 2022 5.0615 14.0573 

June 20, 2022 12.4080 15.2733 

June 29, 2022 10.8848 11.8386 

 623 
 624 
 625 
Figure 3.7  626 
 627 
Weather-specific validation of flows on June 17, 2022. 628 

 629 



 

Figure 3.8  630 
 631 
Non- Weather specific validation of flows on June 17, 2022. 632 

 633 
Figure 3.9  634 
 635 
Spatiotemporal evolution of flows on June 17, 2022 along the study area (a) real 636 
data; (b) weather-specific validation (c) non-weather-specific validation 637 

 638 
 639 



 

 640 
 641 

(a)                                                 (b)                                                 (c) 642 

 643 
3.3.2 Validation of data under bad weather conditions. 644 

 645 
Data from June 30, October 6, and October 6 which experienced bad weather 646 
conditions, were also validated using the calibration results from September 6 with the 647 
same rainy weather conditions. Then, the same data were validated using calibration 648 
results from June 9 with normal weather conditions. The performance summary of the 649 
validation process is summarized in Table 3.5. Weather-specific means that the model 650 
parameters used in the validation are the calibration result under rainy weather 651 
conditions on September 26, 2022. On the other hand, non-weather-specific means that 652 
the validation model parameters used are those derived under the calibration of a day 653 
with normal weather conditions on June 9, 2022. The results show that weather-specific 654 
validation always performs better than the non-weather-specific modeling results. This 655 
illustrates that weather-specific modeling performs more satisfactorily than non-656 
weather-specific considerations. As an example, the MAPE for June 30 using 657 
calibration results from June 9 with the same weather conditions is 3.13% while the 658 
MAPE for June 30 using calibration results from September 26 which has a different 659 
weather condition drastically increased to 14.27 %.  660 

 661 
For brevity, only the modeling results on June 30 are shown but the modeling 662 
performance for the rest of the days are already shown in Table 3.5. In terms of 663 
congestion tracking, weather-specific models were also able to sufficiently track the 664 
occurrence and dissipation of the congestion as illustrated in Figure 3.10 which is not 665 
the case for non-weather-specific modeling shown in Figure 3.11 which was not able 666 
to reflect the start of the congestion wave. Figures 3.12 further shows the better 667 
performance of the weather-specific modeling as shown in the space-time heat maps 668 



 

for both flows and speeds sufficiently predicting the spatiotemporal values compared 669 
to non-weather-specific results. 670 
 671 
 672 
Table 3.5 Summary of results of METANET validation under bad weather conditions 673 
in terms of MAPE (%) 674 
Date Weather-Specific Non-Weather-Specific 

June 30, 2022 3.13 14.27 

October 6, 2022 8.52 11.88 

October 7, 2022 7.79 13.05 

 675 
Figure 3.10  676 
Weather-specific validation of flows on June 30, 2022 677 
 678 

 679 
 680 



 

Figure 3.11  681 
Non- Weather specific validation of flows on June 30, 2022 682 

 683 
 684 
 685 
 686 
Figure 3.12  687 
Spatiotemporal evolution of flows on June 30, 2022 along the study area (a) real 688 
data; (b) weather-specific validation (c) non-weather-specific validation 689 

 690 

 691 
 692 

(b)                                                 (b)                                                 (c) 693 

 694 
 695 



 

4. CONCLUSIONS AND FUTURE WORK 696 
 697 
The study confirmed that the METANET model can accurately simulate traffic 698 
dynamics under normal and adverse weather conditions, providing robust calibration 699 
and validation results. This capability makes METANET a reliable tool for forecasting 700 
traffic behavior in real-world environments, particularly in regions with frequent 701 
rainfall. The research further identifies critical parameters such as free-flow speed, 702 
capacity, and critical density that significantly influence the model’s performance. 703 
Adjustments to these parameters enhance METANET's ability to adapt to weather-704 
induced changes in traffic flow, providing a practical foundation for developing more 705 
accurate, weather-responsive traffic management systems. 706 
Moreover, METANET demonstrated strong potential in tracking congestion even under 707 
varying rainfall intensities. The model effectively captured key weather-induced 708 
changes, such as reduced free-flow speed and capacity. These findings validate 709 
METANET's adaptability to complex traffic phenomena and show its potential in 710 
supporting proactive, data-driven traffic management. 711 

 712 
 713 

We have replicated the performance of the METANET model in the prediction of traffic 714 
states both for calibration and validation as shown in previous studies. To our 715 
knowledge, this is the first time that the model was used using data from Bangkok, 716 
Thailand. This shows that METANET-based control and operations strategies can 717 
apply to the area. 718 

 719 
The study indicated that accounting for traffic flow heterogeneity impacts model 720 
performance. However, the improvement observed was minimal, likely due to the study 721 
focusing on a limited segment of the expressway network and the relatively 722 
homogeneous nature of the study area. Future research should incorporate traffic flow 723 
heterogeneity or use multiple fundamental diagrams in traffic dynamics modeling. It is 724 
anticipated that performance enhancements will be more significant when applied to 725 
larger study areas. 726 

 727 
The model successfully replicated and tracked congestion patterns under both normal 728 
and adverse weather conditions. However, it revealed a notable decrease in key traffic 729 
flow parameters, especially free-flow speed and capacity during rainy conditions. 730 

 731 
Our findings also highlight the model's sensitivity to key traffic flow parameters, which 732 
were observed to change considerably under different weather conditions. Although 733 
validation results under the same weather conditions are less accurate compared to 734 
calibration performance, the difference in performance between weather-specific and 735 
non-weather-specific models is substantial. Therefore, incorporating weather 736 
considerations into METANET’s validation process enhances its practical 737 
applicability. 738 

 739 
In terms of model validation, weather-specific modeling consistently outperformed the 740 
validation without considering weather factors. Weather-specific models effectively 741 
captured both the onset and dissipation of congestion and accurately predicted 742 
spatiotemporal values. In contrast, non-weather-specific models failed to replicate the 743 
congestion waves.  744 
 745 



 

This study advances the understanding of how weather conditions, particularly rainfall, 746 
affect traffic flow parameters and dynamics. By enhancing predictive models for traffic 747 
management and control strategies, the research contributes to the development of 748 
resilient systems that maintain efficiency and safety during adverse weather. Notably, 749 
it is the first comprehensive study to incorporate extensive rainfall data, offering a 750 
robust and longitudinal perspective on rainy conditions. This approach addresses gaps 751 
in previous research, which either assumed clear weather or analyzed limited rainy-day 752 
data, yielding incomplete conclusions. 753 
 754 
A significant focus of the study is the rigorous evaluation of the METANET model 755 
under varying weather conditions. By assessing its calibration and validation accuracy, 756 
sensitivity to parameter variations, and ability to replicate traffic flow characteristics 757 
such as congestion tracking, the research highlights the model's adaptability. The 758 
innovative use of multiple fundamental diagrams in the calibration process further 759 
improves the model’s robustness across different traffic regimes and weather scenarios. 760 
Additionally, the study includes a practical sensitivity analysis, identifying parameters 761 
most affected by adverse weather, enabling traffic engineers to refine models, optimize 762 
signal control, enhance route guidance, and develop adaptive traffic management 763 
strategies. 764 
 765 
The findings have significant practical applications in traffic management and urban 766 
planning. They provide insights into designing resilient infrastructure, such as weather-767 
protected lanes, improved drainage systems, and real-time road monitoring 768 
technologies. Real-time traffic control systems informed by this research can 769 
dynamically adjust speed limits, issue warnings through variable message signs, and 770 
respond to rainfall, reducing accidents and managing congestion effectively. 771 
Furthermore, the refined METANET parameters improve the predictive accuracy of 772 
traffic patterns, aiding resource allocation during adverse weather conditions. 773 
 774 
Overall, this study offers a deeper understanding of how weather influences traffic 775 
congestion. The findings support the development of weather-responsive strategies that 776 
enhance road safety, efficiency, and resilience, ultimately benefiting traffic 777 
management, urban planning, and real-time control systems in mitigating the impacts 778 
of inclement weather. 779 
 780 
The METANET model, while effective for macroscopic traffic flow modeling, has 781 
limitations in capturing intricate vehicle interactions in high-density or complex 782 
scenarios, such as urban congestion or merging behaviors. Calibration for this study 783 
used data from the Burapha Whiti Expressway in Bangkok, making the parameters 784 
specific to that roadway and less generalizable to other networks with different 785 
geometries, lane configurations, or environmental conditions. The reliance on the 786 
Nelder-Mead optimization method may have further limited the findings due to 787 
convergence on local minima. 788 
 789 
The study analyzed clear and rainy weather but excluded other factors like temperature, 790 
wind, or seasonal variations, which could also affect traffic. Low-resolution microwave 791 
radar data collected every five minutes may have missed short-term fluctuations, 792 
reducing the model's sensitivity to finer changes in traffic flow. Future research could 793 
address these gaps by incorporating higher-resolution or additional data sources and 794 
exploring a broader range of environmental conditions. 795 



 

Future studies could also explore integrating METANET with adaptive and predictive 796 
control strategies, such as ramp metering, variable speed limits, and coordinated signal 797 
timings. These enhancements would improve real-time congestion management and 798 
expand the model’s applicability to diverse and complex traffic scenarios. 799 

 800 
 801 
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