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15 Abstract: This study evaluates the METANET model's capability to simulate traffic
16 dynamics under normal and adverse weather conditions, confirming its reliability in
17 forecasting real-world traffic behavior, particularly in regions with frequent rainfall.
18 Calibration and validation results demonstrate METANET's adaptability, with critical
19  parameters such as free-flow speed, capacity, and critical density significantly
20 influencing performance. Adjusting these parameters enhances METANET's
21 responsiveness to weather-induced traffic flow variations, providing a robust
22  foundation for developing weather-responsive traffic management systems. The study
23 successfully replicates METANET’s predictive performance using traffic data from
24 Bangkok, Thailand, marking the first application of the model in this region. Findings
25  suggest that accounting for traffic flow heterogeneity only marginally improves
26 accuracy, likely due to the limited study area and its relatively homogeneous traffic
27  conditions. Validation results indicate that weather-specific modeling outperforms
28  general models, effectively capturing congestion onset and dissipation while accurately
29  predicting spatiotemporal traffic variations. Weather-adaptive METANET models
30  demonstrate improved accuracy in tracking congestion waves and replicating flow-
31 density relationships under varying rainfall intensities. The research underscores the
32 model’s sensitivity to key traffic parameters, emphasizing the necessity of
33  incorporating weather considerations into traffic flow modeling for more precise
34  predictions.

35
36 1. INTRODUCTION

37 Weather conditions impact various road conditions, including traffic demand, safety,
38  operations, and flow. This paper proposes including rainfall factors in macroscopic
39 traffic flow modeling, calibrated and validated using field data. This model aims to
40  calculate the effects of rainfall on traffic flow dynamics, which has potential
41 applications for traffic control and operations.

42 Macroscopic traffic flow theory is used to predict states of traffic at any segment of a
43  highway based on initial conditions. The model treats the flow of traffic as a fluid rather
44 than focusing on individual vehicles, using three main variables - average speed,
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density, and flow - to describe traffic stream characteristics. Macroscopic traffic flow
models are classified as first-order, second-order, or higher-order models, depending
on the number of differentials. In literature, two widely used macroscopic models are
used. The first is the CTM or the Cell Transmission Model, and the other is the
METANET model. In a systematic review of well-known papers on macroscopic
traffic flow modeling by Wang et. al (Wang et al., 2022), they looked into 32 papers,
of which 80 % either used CTM or METANET.

The Lighthill-Whitham—Richards (LWR) model (Lighthill & Whitman, 1955;
Richards, 1956) is a popular first-order model, employing a single PDE in expressing
the flow following the law of conservation of vehicles. In a well-known paper by
Daganzo (Daganzo, 1994), he introduced the Cell Transmission Model (CTM), which
represents the road as a series of discrete cells, each of which can hold a certain number
of vehicles. Vehicles move between cells according to specific rules, allowing the
model to capture traffic flow, congestion, and other traffic dynamics in a simplified yet
effective manner. It is a discretized version of LWR, which can be solved analytically
due to its piecewise linear Fundamental Diagram (FD). While both can determine the
uncongested and congested side of the FD representing normal traffic and congestion,
they cannot replicate complex phenomena. Examples of this are the capacity drop
phenomenon and scattering in the q-k (flow density) diagram.. Higher-order models
have solved these limitations. Several approaches have been developed to enhance the
LWR model and its ability to simulate complex traffic phenomena.

The Payne-Witham (PW) Model, introduced by Payne (Payne, 1971) and Whitman
(Whitman, 1974), derives the equation for acceleration using the expanded Taylor
series of a car-following model. It offers insights into complex traffic phenomena such
as scattering in the flow-density diagram. A discretized version of this model,
METANET, was proposed by Messmer and Papageorgiou (Messmer & Papageorgiou,
1990) and is widely used for large-scale network applications and control purposes
(Kontorinaki et al., 2017; Kotsialos et al., 2002; Papageorgiou et al., 2010; Spiliopoulou
et al.,, 2014, 2017). The METANET model is a macroscopic discrete second-order
model that was firstly applied to the Boulevard P’eriph erique in Paris. The name

METANET, acronym for “Mod ele d’E coulement de Trafic sur Autoroute NETworks”
in French which translates to "Traffic Flow Model on Highway Networks", was firstly
associated with the simulation tool for the freeway network, but it is now adopted to
generically indicate the second-order traffic flow model.

In the study of Spiliopoulou et al. (2014), which compared traffic flow modeling using
the Cell Transmission Model and METANET, they showed that the second-order
model METANET performed better than CTM. Kontorinaki et al. (2017) also conclude
that METANET outperforms other macroscopic models such as CTM and LWR and
their extensions. In a comprehensive benchmarking of macroscopic traffic flow models
conducted by Mohammadian et al. (Mohammadian et al., 2021), they compared the
performance of the following models: LWR, LWR with extensions, CTM, CTM with
extensions, METANET, Gas-Kinetic Theory, and Generic Second-Order Modeling.
The models were assessed for their effectiveness in tracking congestion. Their findings
indicated that METANET demonstrated the best performance overall, particularly
excelling in modeling ramp-merging congestion.
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This paper focuses on the METANET model, a discretized and improved variation of
the LWR model combining the characteristics of the PW model. METANET is chosen
for its three distinct dynamic functions that predict key traffic flow parameters: flow,
speed, and density. Its form and convenient discretization intervals allow to facilitate
the integration of field-collected data. The METANET model's clear analytical
properties, including a specific space-time form with improved differentiable functions,
make it suitable for real-time freeway traffic control operations. METANET has been
applied across a range of areas, including Freeway Traffic Flow Modeling, where it has
been utilized to model freeway traffic dynamics (Kontorinaki et al., 2017;
Mohammadian et al., 2021; Spiliopoulou et al.,2017; Wang et al., 2022), variable speed
limit control which was applied to manage and control variable speed limits (Wang et
al., 2021), ramp metering where the model has been used to optimize strategies for
metering of ramps (Kan et al.,, 2016; Wang et al., 2014, 2021), and traffic state
estimation and prediction which has been employed for estimating and predicting traffic
states (Wang et al., 2022; Zhao, 2021).

The weather-specific METANET model is calibrated and integrated into a validation
model using field data. This paper makes four main contributions: First, it considers
different weather conditions for calibration and applies them to various macroscopic
traffic variables during validation, whereas, to our knowledge, previous studies have
typically focused only on the applicability of weather-specific parameters and not on
comparing them with other weather conditions. Second, it utilizes real field data rather
than simulation data to provide clear quantitative results, demonstrating the significant
impact of weather on freeway traffic dynamics. Lastly, it demonstrates the effects of
considering multiple fundamental diagrams for every section of the highway.

2. METHODOLOGY

This paper focuses on the METANET model, a widely used macroscopic traffic flow
model shown to outperform other models like the Cell Transmission Model (CTM) in
accurately tracking freeway congestion. METANET is based on a discretized, enhanced
version of the Payne-Witham model. It predicts key traffic parameters (flow, speed, and
density) through three dynamic functions, making it suitable for real-time freeway
traffic control. This paper aims to calibrate and validate METANET using a section of
Bangkok’s Burapha Whiti Expressway, which includes ramps and is subject to
recurring congestion.

METANET divides the highway into sections and computes traffic states at each
discrete time step. It uses equations involving density, flow, and speed, enhanced by
additional terms for accurate on-ramp merging and lane-drop modeling. Calibration
aligns model predictions with actual traffic data, while validation tests model
performance on an independent dataset, focusing on average speed and flow as
performance metrics. This process is optimized using the Nelder-Mead algorithm,
selected for its efficiency in achieving accurate parameter estimates.

Traffic data, including flow, speed, and density, were collected every five minutes
throughout 2022, covering both dry and rainy conditions. Two days of data were used
for calibration (one with rain, one without), and six additional days were used for
validation, ensuring no incidents or sensor failures during the study period.
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METANET employs the discretization and enhancement of the form of the Payne
model. It treats the highway section as continuous numbered sections i (section i is
downstream of section i—1), each with specific lengths L, , and lane numbers A;. Time
is subdivided into equal gaps of duration T. In every discrete time step, time k=0, 1,...,
K, METANET computes the density, flow, and speed for each section i using the
equations:

pik+1) = p; (k) + 771 [9:.1 () - 9,(K)] (1)

L;

q; (k) = vi(ky pi (k) 2, (2)

v T[pi+1 (k) —pi (k)] (3)

Vit R)= ViR + Vi) [V () - ViG] + - IVE 0k - vy 1 - - O

Where the model parameters are a time constant (7), an anticipation constant (v), and a
mode parameter (k). V¢ (p(k)) represents the fundamental diagram and is determined
using the following equation:

Ve (k) = vy exp [ — (22 @] 4)

i pcr,i

where vy represents the free-flow speed, p_.; represents the critical density

corresponding to the maximum flow condition, and a; another model parameter. It
must be noted that the average speed calculated must be at least v ;.

For more accurate merging and lane-drop modeling, enhancements were proposed by
Papageorgiou et al. (1989). Specifically, the model incorporates two additional terms
to capture these effects better. One notable term addresses the on-ramp merging impact
by adjusting the traffic flow dynamics for the influence of merging cars. The following
term 1s then added

~8Tqu (k) vi (B Ly (0, (k) + 1)
into eq. (3) for the on-ramp segment. A further parameter § is included, and gy

represents the number of vehicles entering the ramp. To include the consideration of
the effects of lane-changing, the term

—TAL p; (k) vi (K)*/ L, (KD
is included to eq. (3) for the consideration of the immediate section upstream when

there is a dropping of lanes, a model parameter ¢ is further added where AA refers to
the number of lanes that were dropped.
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At the change of geometric characteristics, such as the presence of ramps, the flow is
separated into various sections that exit on the highway based on a defined turning rate
Bij(k). Additionally, for sections entering the change in highway geometry, a density
downstream p,(k+1) is required in eq. (3) to account for the influence of downstream
traffic conditions. Given that bifurcations lead to two downstream sections, the
following is used to determine the downstream density for section i at the bifurcation
as proposed by Messmer & Papageorgiou (1990):

Zueoi pfl (k)
Sueo, Py ()

pivi(k) = (5)

where p;. (k) represents the computed downstream density under consideration utilized
in eq. (3) for section i. Meanwhile, pu(k) denotes the section density downstream of
considered segment, where O, is the set of sections which exits the highway. The
quadratic average used in eq. (5) considers the potential congestion spillback to the
section. The eq. (5) does not require any additional calibration parameters. For this
study, the actual densities on off-ramps are given as boundary conditions to the model.
Consequently, any increase in the density of the off-ramp directly affects the average
speed of the upstream mainstream area through equations eq. (3) and eq. (5). For
merging locations with on-ramps, the model incorporates the actual on-ramp flows as
direct input, treating on-ramps as integrated parts of the sections rather than modeling
them as separate entities.

METANET modeling includes various parameters whose values can vary depending
on factors like the network geometry, driver behavior, truck percentage, and weather
conditions at different freeway sites. Therefore, the accuracy and reliability of these
models depend on correctly specifying these parameter values. Calibration of the
models is often necessary to ensure they are suitable for real-world applications while
validation tests the accuracy of the model.

2.1 Calibration and validation of models

Before applying traffic models to practical applications like traffic monitoring and
management, they must undergo calibration and validation using actual traffic data.
Calibration adjusts model parameters to minimize the difference between predictions
and observed data, ensuring the model accurately reflects current traffic conditions.
Validation tests the calibrated model's predictive performance using an independent
dataset, assessing its ability to predict future traffic. Both processes are critical:
calibration without validation has limited value, as it only fits the model to a specific
dataset without ensuring broader applicability.

Calibration also estimates parameters not directly observable in the dataset, especially
in higher-order models like METANET, which include empirical terms to enhance
modeling capabilities. This process typically involves solving nonlinear systems
through optimization techniques to minimize the difference between model outputs and
actual data using a cost function. Parameter values are selected from an admissible
range defined by prior experience and physical meaning.

Validation uses a different dataset (e.g., from another day) within the same study area
to compare model outputs with actual data, ensuring the model performs reliably across
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various traffic conditions and time periods. While flows are easier to model due to
conservation equations, accurately predicting average speeds across highway segments
remains challenging.

Calibrating a least-squares optimization problem nonlinearly often has multiple local
minima as illustrated by Ngoduy & Maher (2012) in the calibration of second-order
traffic models using the continuous cross-entropy method, making gradient-based
methods unsuitable. Spiliopoulou et al. (2017) demonstrated that different optimization
techniques can arrive at solutions to the estimation problem for METANET. They have
employed three commonly used optimization algorithms. The first is the Nelder-Mead
(N-M) algorithm (Lagarias et al., 1998; Nelder & Mead, 1965) which is deterministic.
The next one is the stochastic Genetic Algorithm (GA) (Whitley, 1994). Lastly, they
also considered the cross-entropy method (Rubinstein & Kroese, 2004). All three
algorithms were able to converge to a solution set. Nevertheless, their results show that
the Nelder-Mead algorithm performs 257 times faster than the genetic algorithm and
242 times faster than the cross-entropy method. This is an important finding since the
computation time must be considered in traffic flow modeling, especially because it
often involves real-time applications. Therefore, the Nelder-Mead Algorithm is used in
this study for the determination of the parameters. The algorithm is also well-suited for
finding acceptable local minima, or potentially even the global minima, in complex,
multi-dimensional optimization landscapes.

2.2 The Nelder-Mead algorithm

The Nelder-Mead algorithm (Nelder & Mead, 1965) is a renowned algorithm for the
optimization of multidimensional systems with unconstrained conditions. For this
study, we have particularly adapted a version for constrained optimization as described
by Spiliopoulou et al. (2014). This method is advantageous because it requires no
derivative information, making it applicable for problems with nonlinear and
discontinuous cost functions.

The algorithm operates using a simplex with » number of dimensions and n+/ number
of vertices. Each vertex represents a potential solution and has an associated cost
function value. The Nelder-Mead method begins with an initial simplex and iteratively
transforms it to increase the predictive accuracy at the vertices. In every iteration, the
method will sort the solutions by their cost function values, calculate the centroid, and
then update the solution by reflecting, expanding, or contracting the worst vertex. If
these transformations do not yield improvements, the algorithm performs a shrinkage
towards the best vertex, generating new vertices.

The algorithm’s performance is influenced by the four parameters of o for shrinkage, y
for expansion, ¢ for reflection, and Y for contraction. The recommended values for
these parameters are 0.5, 2, 1, and 0.5, respectively (Spiliopoulou et al., 2014). The
algorithm may sometimes perform many iterations without significant improvements.
To address this, multiple restarts with a limited number of iterations can be used as a
heuristic solution. This technique was employed in this paper by doing 5 runs for each
calibration and comparing the respective performances.
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2.3 Measurement of performance

In this context, measuring performance involves assessing key variables used to
evaluate the results of model calibration. For macroscopic traffic flow modeling, the
primary variables are flow in veh/hr, density in veh/km, and average speed in km/hr.
The calibration process is compared against the actual dataset, which is also represented
by these traffic flow variables. Therefore, evaluating calibration results based on these
variables is natural. From the modeling results of other papers, it is advisable to focus
on average speeds during the calibration procedure. This is because empirical
observations suggest predicting flows is relatively straightforward due to the
conservation law, even if speed matching is not perfect.

Second, it has been found that if the modeled speeds match the actual speeds in the
segment considered adequately, the flow predictions are generally satisfactory. Thus,
focusing on speed matching is crucial and often more challenging. Lastly, measuring
densities directly or modeling occupancies is difficult, with data often being incomplete
or inaccurate.

2.4 Test Network, Evaluation, and Traffic Data

A highway network is graphically represented where links correspond to segments of
the highway with consistent characteristics, such as uniform lane count, grade, and
curvature. Nodes are used to indicate significant changes in the roadway's geometry
including ramps and lane reductions. If a segment exhibits varying characteristics, it is
divided into multiple links, each separated by a node.

For computational modeling, the time horizon is divided into 5-second intervals. To
ensure the stability of the numerical method, the length of each segment and the time
interval must satisfy the celebrated Courant-Friedrichs-Lewy (CFL) condition (Courant
etal., 1928; de Moura & Kubrusly, 2013; Sanz-Serna & Spijker, 1986).

The study area considered for this paper is a segment of the Burapha Whiti Expressway
in Bangkok, Thailand (station 12+400 to 19+500). This highway stretch includes on-
ramps and off-ramps. This part of the expressway was considered for the calibration
and validation of the traffic flow model because of the presence of the ramps. This is
also the segment of the highway nearest to the automatic weather station. Only this span
of the highway was considered to make the effects of weather more pronounced as
different parts of the highway far from the weather station may experience a different
effect on the traffic flow in consideration of weather. To model the study area by use
of the METANET model, the highway is represented with four nodes and three links.
Each node represents an area with a change in geometric characteristics in the highway.
The homogenous highway segments in between are denoted by links. Figure 1 displays
the length, number of lanes, ramp locations, and the location of the microwave radar
detectors represented by bullets.

The dataset for this study was gathered at the Expressway Authority of Thailand, which
operates country’s expressway system. It includes flow, speed, and density for each
microwave radar station gathered every 5 minutes. It is observed that recurring
congestion is evident in this area in the morning rush hours due to the presence of
ramps. 2 days were selected for the calibration process, representing each for good and



315  bad weather conditions representing the occurrence of rainfall during the gathering of
316 data while 6 days were considered for validation (3 for each weather condition). It is
317  important to note that the primary criterion for selecting these 8 days was that no
318  incidents or detector failures occurred during the morning hours of 5—-12 AM on the
319  examined freeway stretch, conditions which could not be replicated by any traffic flow
320  model. Figure 2.1 illustrates the detailed layout of this expressway and the locations of
321 traffic sensors, represented by black dots. Data for analysis were collected in 2022,
322 including days with and without precipitation.

323

324

325  Figure 1

326

327  Representation of the Study Area Considered in Burapha Whiti Expressway, Bangkok,
328  Thailand.

| LINK 1 | LINK 2 | LINK 3 |
| | | |

STA STA STA STA STA

START 12+400 13;800 2 15;390 3 16+600 4 19+500 END

A *

D13 v D15 u D16 u D19
LENGTH | 1000m | 1400m | 2600 m |
NO. OF LANES | 3 ! 3 | 3 |

329

330 2.5 Novel Considerations

331 This paper offers a comprehensive examination of macroscopic traffic flow modeling,
332 focusing on both calibration and validation. Unlike previous studies, this research
333 provides a more detailed analysis of model calibration, addressing critical aspects such
334  as congestion tracking, capacity reduction, and the impact of weather conditions on
335  prediction accuracy. It also includes extensive validation results from the same case
336  studies, demonstrating that the METANET model accurately captures traffic flow
337  dynamics, particularly concerning weather-specific conditions.

338  Despite the significance of calibrating models with real traffic data for accurate
339  application, there is a scarcity of research dedicated to model calibration and validation
340 (Wang et al., 2022). Furthermore, the numerical computation of these models
341 necessitates space-time discretization, making simplified and analytically tractable
342 models highly beneficial for practical applications.

343  This paper aims to address four key issues in traffic flow modeling:

344 a. Traffic Flow Inhomogeneity: stretches of a highway usually exhibit inhomogeneity

345 in traffic flow due to variations in key traffic flow parameters caused by several
346 factors. To effectively model such variations, a model must consider different
347 fundamental diagrams to represent a section of the highway with the same traffic

348 and geometric characteristics.
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b. Congestion Tracking: this refers to a model’s ability to reproduce and predict when
recurrent congestions emerge and propagate. A model should accurately reproduce
the dynamics of congested traffic flow across spatial and temporal scales. The
effectiveness of a model in reflecting real-world traffic is determined by how its
structure is represented mathematically and by the parameters the model includes.
When it is established, the focus shifts to calibrating parameters to ensure the model
can accurately describe the entire evolution of traffic conditions.

c. Effects of Weather on Macroscopic Traffic Flow Modeling: the performance of
models that undergo calibrations under an unspecified weather event may not
accurately represent the dynamics of traffic under different weather conditions in
the same location, as key traffic parameters can be significantly affected. In the
literature, only the work of Bie et al. (2017) specifically addressed and investigated
the impact of weather parameters on traffic dynamics using METANET by
introducing a weather factor into macro traffic state prediction. There is limited
quantitative evidence on the broader impact of weather on model performance. This
research will also address model parameter transferability, evaluating whether a
calibrated model remains applicable to new datasets from different times or weather
conditions, a topic that has not been fully explored in the literature. The focus will
be on determining if a model developed with normal weather data can be effectively
used for rainy or other adverse weather conditions, and vice versa.

This research seeks to provide empirical evidence and enhance the understanding
of these issues, which are currently supported more by qualitative observations than
by quantitative analysis.

3. RESULTS AND DISCUSSION
3.1 Model Calibration Result under Normal Weather Conditions

The different results of the calibrations are detailed in this section, focusing first under
normal conditions. The data for June 9, 2022, was used for this. For not accounting for
traffic flow heterogeneity, the specific results are illustrated in Figures 3.1 and 3.2.
When considering for heterogeneity, the summary of the performance with specific
results illustrated in Figures 3.3 through 3.4.

The Nelder—-Mead algorithm was employed for calibration with the following settings:
E=1,x=2,y=0.5, and o = 0.5 (for further details, see Section 2.2). The algorithm
was terminated based on either the convergence of the cost function or the convergence
of the acceptable simplex, both when the tolerance level reaches 0.1, and after 500
iterations.

3.1.1 Not Considering Heterogeneity

As discussed in the previous sections, not accounting for traffic flow inhomogeneity
means that only 1 fundamental diagram (FD) is considered for the whole study area.
Analysis of the measurement data revealed that the highway under consideration has
the same geometric characteristics.

Five calibration runs were conducted, and their performance is measured in terms of
Mean Absolute Percentage Error (MAPE) for all the detectors. For each calibration run,
the algorithm begins with specified initial values and randomly generates the next
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values based on these initial values. As described in the previous sections, the working
simplex consists of n + [ vertices, where n represents the number of parameters being
calibrated. Using a physically reasonable initial vertex is preferable to expedite
algorithm convergence. The results show that the best performance of all the calibration
runs has a MAPE of 1.3943 %, 3.1043 %, and 5.7205 % for Detectors 13, 15, and 16,
respectively. Nevertheless, the difference in the performance index between each run
is not very significant, showing that the algorithm converges to almost the same optimal
parameters. The best run will be used for further analysis.

Table 3.1 presents the optimum parameter values calculated by the Nelder-Mead
algorithm for the best calibration run. 7 is the relaxation time parameter in second (s)
which impacts how fast the average speed can cope with the speed in equilibrium that
is computed in the FD, v is an anticipation parameter in km?/h controlling the backward
movement of the congestion wave, 8 is a parameter controlling the merging mechanism
in h/km, @ is the parameter responsible for the dropping of lanes in h/km, k is an
additional model parameter in veh/km/lane, vmin is the minimum value of of the speed
in km/hr, vy is the free- flow speed in km/hr, p.; refers to the critical density in veh/km,
and qcap means the capacity in veh/hr.

Table 3.1

Optimal Parameter Values for June 9, 2022 (Normal Weather Condition)

Model Parameters Value
T(8) 8.121

v (km?/h) 29.000
8 (h/km) 0.118
® (h/km) 0.00021
K (veh/km/lane) 2.337
Vmin (km/hr) 12.159
vy (km/hr) 83.225
per (veh/km) 21.402
eap (veh/hr) 1781.210

Figure 3.1 shows the congestion tracking performance on June 9 using only 1
Fundamental Diagram. It illustrates the modeling outcomes for traffic flows and mean
speeds. It presents the calibration results for flows and speeds at all sensor locations in
the study area. In these figures, black refers to actual measurements, while red refers to
the modeling results. The calibrated flow models closely predicted the actual data at
different locations, while the mean speed models effectively matched when the
congestion was formed and when it dissipated. It is evident that flow prediction is more
accurate than with mean speeds. This is due to the governing conservation equation for
traffic volumes which is unaffected by free flow speeds. On the other hand, average
speeds are greatly affected by these.

It highlights the congestion events in the study area. The event started at detector 16
and spread downstream to detector 13 at around 6:45 AM to 8:30 AM. The congestion
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event was accurately predicted in terms of spatiotemporal coverage. The results are
considered satisfactory to be applied further. Note that the model has been arranged in
downstream-to-upstream form.

Figure 3.2 shows the space-time maps depicting the coverage of the dynamics of flows
and average speeds in the highway section, in which the y-axis represents the spacing
requirements in the traffic flow direction. When comparing it to the actual data, the
models under calibration effectively captured traffic flow dynamics and reproduced the
emergence and dissipation of the congestion wave.

3.1.2 Considering Heterogeneity

Considering traffic flow inhomogeneity means that a unique fundamental diagram (FD)
is assigned to a segment of the highway. This highlights how variations in key traffic
flow parameters reflect traffic flow differences across the study area.

Five calibration runs were again conducted and their performance is measured in terms
of MAPE for all the detectors. The same with the consideration of the same fundamental
diagram for each section, the algorithm began with a similar initial value with the
working simplex generated by randomly generating succeeding values around this
initial point. The result shows best performance of all the calibration runs has a MAPE
of 1.3152 %, 2.8912 %, and 5.5827 % for Detectors 13, 15, and 16, respectively. Again,
the difference in the performance index between each run is not very significant which
shows that the algorithm can converge to almost the same optimal values.

The modeling result in terms of congestion tracking is shown in Figure 3.3. It illustrates
the modeling outcomes for traffic flows and mean speeds for June 9, 2022 considering
heterogeneity. It presents the calibration results for flows and speeds at all sensor
locations in the study area. In these figures, black refers to actual measurements, while
red refers to the modeling results. The calibrated flow models in closely predicted the
actual data at different locations, while the mean speed models effectively matched
when the congestion was formed and when it dissipated. Flow prediction is more
accurate than with mean speeds due to the conservation equation being the same as the
result of considering only 1 fundamental diagram.

Figure 3.4 shows the space-time maps depicting the coverage of the dynamics of flows
and average speeds in the highway section, in which the y-axis represents the spacing
requirements in the traffic flow direction. When comparing it to the actual data, the
models under calibration effectively captured traffic flow dynamics and reproduced
traffic congestion with appropriate strength over the relevant spatiotemporal range. This
highlights the congestion events in the study area. The event started at detector 16 and
spread downstream to the detector 13 at around 6:45 AM to 8:30 AM. The congestion
event was accurately predicted in terms of spatiotemporal coverage.

Figure 3.1 Results of Model Calibration of flows and speeds at Different Sensor
Locations — June 9,1 FD
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481  Figure 3.2 Space-time evolution of flows and speeds along the study area (a) real
482  data; (b) using 1 Fundamental Diagram
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486  Figure 3.3 Results of Model Calibration Flows and Speeds at Different Sensor
487  Locations — June 9, 3 FD
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492 Figure 3.4 Space-time evolution of flows along the study area (a) actual data; (b)
493  using 3 Fundamental Diagrams
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3.201 Summary of results in consideration of traffic flow heterogeneity
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Table 3.2 summarizes the performance of the best calibration runs in terms of MAPE
of speed in km/hr for all the detectors in consideration of traffic flow heterogeneity.
The result shows that considering traffic flow heterogeneity in traffic flow modeling
has an advantage, as shown in the decrease in the value of MAPE. This result is
expected because of the increase in the number of degrees of freedom. Nevertheless,
this difference between the performances is only slight and can be considered not
significant. This is different compared to the result obtained by (Wang et al., 2022)
where the consideration of different fundamental diagrams resulted in a significant
difference in the performance indicators. This can be explained by their use of the
whole expressway network which consisted of different sections with different
geometric characteristics. In the current study, the span of the highway considered
consists of the same number of lanes and other geometric characteristics which
justifies that they can have the same fundamental diagram. With this, further
application in the next sections will only consider one fundamental diagram for the
traffic flow modeling in the considered study area.

Table 3.2

Performance summary for 5 calibration runs on June 9, 2022 considering traffic flow
heterogeneity

Heterogeneity Detector MAPE
Consideration No.

1 FD D13 1.3943
D15 3.1043
D16 5.7205
3FD D13 1.3152

D15 2.8912
D16 5.5827

The space-time diagram for flows and speed using 1 and 3 fundamental diagrams shows
that both models were able to predict when congestion forms and dissipates in the
spatiotemporal range and that the speed and flow prediction matches are both
acceptable for further application. Overall, the congestion tracking results under normal
weather were very satisfactory.

3.2 Model Calibrations under Rainy Weather Conditions

The calibration process was also performed using measurement data on a rainy day on
Sept 26, 2022. The same 5 runs are completed and the calibration performance in terms
of MAPE for speed is determined. The same as the calibration for normal weather
conditions, there is not a significant difference in the MAPE showing that the algorithm
converges to almost the same parameter values. The result shows that the performance
of the calibration has a MAPE of 3.1673 %. The resulting parameters of the model are
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shown in Table 3.4. It should be noted that there is a substantial decrease in the key
traffic flow parameters of free-flow speed vy, critical density per, and qeap. To illustrate,
the free-flow speed, critical density, and capacity under normal weather conditions are
83.2 km/hr, 21.4 veh/km, and 1781.2 veh/hr, respectively. Under bad weather
conditions, it was reduced to 72.3 km/hr, 21 veh/km, and 1510 veh/hr. respectively.
This is expected since it has been proven in the literature that weather conditions affect
the key traffic flow parameters and are consistent with empirical observations.

Table 3.4

Optimal Parameter Values for September 26, 2022 (Bad Weather Conditions)

Model Parameters Value

T (s) 6.25
v (km?/h) 27.99
8 (h/km) 0.20
® (h/km) 0.00
K (veh/km/lane) 10.00
Vmin (km/hr) 10.00
vy (km/hr) 72.26
per (veh/km) 21.00
eap (veh/hr) 1510.71

With the same study area which has homogeneous traffic flow, the modeling results
exhibited similar calibration accuracy for flows on a rainy day compared to a non-rainy
day. The model was still able to match the real flow and speed data including the
tracking when congestion emerged and dissipated. However, the accuracy of speed
calibration on rainy days was somewhat reduced.. The modeling results for flows and
mean speeds are shown in Figure 3.5 while the space-time diagram for flows and speeds
is illustrated in Figure 3.6.

3.3 Validation of METANET under Different Weather Conditions

Both the validation results for flows and speeds under different weather conditions are
shown in this section. In each pair of the following validation processes, the optimal
model parameters for each weather condition are used for a given date. It is first
validated using calibration results from the same weather condition and another
validation process is conducted using the calibration results from a different weather
condition. Note that the accompanying parameters for a given weather condition are
used (see Tables 3.1 and 3.3).

For each type of weather, 3 days were used for validation purposes. For normal weather
conditions, June 17,2022; June 20, 2022; and June 29, 2022 were used. For bad weather
conditions, June 30, 2022; October 6, 2022; and October 7, 2022, were validated. For
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a given day, the modeling spanned from the same time interval during the calibration
process.

Figure 3.5 Results of Model Calibration (Flows and Speeds) at Different Sensor
Locations — Sept 26
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584  Figure 3.6 Space-time evolution of flows along the study area on Sept 26 (a) real
585  data, (b) model
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588
589  3.3.1 Validation on days with no rain
590

591  The validation of the model under normal weather conditions for 3 days on June 17,
592  2022; June 20, 2022; and June 29, 2022, is discussed in this section. Table 3.4 shows
593  the detailed quantitative error measurement in terms of MAPE for comparison.
594  Weather-specific means that the model parameters used in the validation are the
595  calibration results under normal weather conditions (see Table 3.1). On the other hand,
506  non-weather-specific means that the validation model parameters used are those
597  derived under the calibration of a day with bad weather conditions (see Table 3.4). It is
598  shown that weather-specific validation always performs better than the non-weather-
599  specific modeling results. To illustrate, the MAPE for June 17 using calibration results
600  from June 9 with the same weather conditions is 5.0615% while the MAPE for June 17
601  using calibration results from September 26 which has a different weather condition
602  drastically increased to 14.0573 %. This result also proves that the modeling result is
603  sensitive to the value of the key traffic flow parameters since it was found in the
604  previous section that there is a significant decrease in the value of the said parameters
605  under different weather conditions. It is worth noting that the validation results under
606  the same weather conditions have less accuracy compared to the calibration.
607  Nevertheless, the difference between weather-specific validation processes is very
608  significant. It can be concluded that considering the weather in the validation process
609  of METANET will be more helpful for further practical applications.

610
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For brevity, only the modeling results on June 17 are shown but the modeling
performance for the rest of the days are already shown in Table 3.4. In terms of
congestion tracking, weather-specific models were able to sufficiently track the
occurrence and dissipation of the congestion as illustrated in Figure 3.7. This is not the
case for non-weather-specific modeling depicted in Figure 3.8 which shows that the
model was not able to replicate the congestion wave at around 6:30 AM. Figure 3.9
further illustrates the better performance of the weather-specific modeling as shown in
the space-time heat maps for both flows and speeds sufficiently predicting the

spatiotemporal values compared to non-weather-specific results.

Table 3.4 Summary of results of METANET validation under normal weather
conditions in terms of MAPE (%)

Date Weather-Specific Non-Weather-Specific
June 17, 2022 5.0615 14.0573
June 20, 2022 12.4080 15.2733
June 29, 2022 10.8848 11.8386
Figure 3.7

Weather-specific validation of flows on June 17, 2022.
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Figure 3.8

Non- Weather specific validation of flows on June 17, 2022.
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3.3.2 Validation of data under bad weather conditions.

Data from June 30, October 6, and October 6 which experienced bad weather
conditions, were also validated using the calibration results from September 6 with the
same rainy weather conditions. Then, the same data were validated using calibration
results from June 9 with normal weather conditions. The performance summary of the
validation process is summarized in Table 3.5. Weather-specific means that the model
parameters used in the validation are the calibration result under rainy weather
conditions on September 26, 2022. On the other hand, non-weather-specific means that
the validation model parameters used are those derived under the calibration of a day
with normal weather conditions on June 9, 2022. The results show that weather-specific
validation always performs better than the non-weather-specific modeling results. This
illustrates that weather-specific modeling performs more satisfactorily than non-
weather-specific considerations. As an example, the MAPE for June 30 using
calibration results from June 9 with the same weather conditions is 3.13% while the
MAPE for June 30 using calibration results from September 26 which has a different
weather condition drastically increased to 14.27 %.

For brevity, only the modeling results on June 30 are shown but the modeling
performance for the rest of the days are already shown in Table 3.5. In terms of
congestion tracking, weather-specific models were also able to sufficiently track the
occurrence and dissipation of the congestion as illustrated in Figure 3.10 which is not
the case for non-weather-specific modeling shown in Figure 3.11 which was not able
to reflect the start of the congestion wave. Figures 3.12 further shows the better
performance of the weather-specific modeling as shown in the space-time heat maps
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for both flows and speeds sufficiently predicting the spatiotemporal values compared
to non-weather-specific results.

Table 3.5 Summary of results of METANET validation under bad weather conditions
in terms of MAPE (%)

Date Weather-Specific Non-Weather-Specific
June 30, 2022 3.13 14.27
October 6, 2022 8.52 11.88
October 7,2022 7.79 13.05
Figure 3.10
Weather-specific validation of flows on June 30, 2022
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Figure 3.11

Non- Weather specific validation of flows on June 30, 2022
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Spatiotemporal evolution of flows on June 30, 2022 along the study area (a) real
data; (b) weather-specific validation (c) non-weather-specific validation
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4. CONCLUSIONS AND FUTURE WORK

The study confirmed that the METANET model can accurately simulate traffic
dynamics under normal and adverse weather conditions, providing robust calibration
and validation results. This capability makes METANET a reliable tool for forecasting
traffic behavior in real-world environments, particularly in regions with frequent
rainfall. The research further identifies critical parameters such as free-flow speed,
capacity, and critical density that significantly influence the model’s performance.
Adjustments to these parameters enhance METANET's ability to adapt to weather-
induced changes in traffic flow, providing a practical foundation for developing more
accurate, weather-responsive traffic management systems.

Moreover, METANET demonstrated strong potential in tracking congestion even under
varying rainfall intensities. The model effectively captured key weather-induced
changes, such as reduced free-flow speed and capacity. These findings validate
METANET's adaptability to complex traffic phenomena and show its potential in
supporting proactive, data-driven traffic management.

We have replicated the performance of the METANET model in the prediction of traffic
states both for calibration and validation as shown in previous studies. To our
knowledge, this is the first time that the model was used using data from Bangkok,
Thailand. This shows that METANET-based control and operations strategies can
apply to the area.

The study indicated that accounting for traffic flow heterogeneity impacts model
performance. However, the improvement observed was minimal, likely due to the study
focusing on a limited segment of the expressway network and the relatively
homogeneous nature of the study area. Future research should incorporate traffic flow
heterogeneity or use multiple fundamental diagrams in traffic dynamics modeling. It is
anticipated that performance enhancements will be more significant when applied to
larger study areas.

The model successfully replicated and tracked congestion patterns under both normal
and adverse weather conditions. However, it revealed a notable decrease in key traffic
flow parameters, especially free-flow speed and capacity during rainy conditions.

Our findings also highlight the model's sensitivity to key traffic flow parameters, which
were observed to change considerably under different weather conditions. Although
validation results under the same weather conditions are less accurate compared to
calibration performance, the difference in performance between weather-specific and
non-weather-specific models 1s substantial. Therefore, incorporating weather
considerations into METANET’s validation process enhances its practical
applicability.

In terms of model validation, weather-specific modeling consistently outperformed the
validation without considering weather factors. Weather-specific models effectively
captured both the onset and dissipation of congestion and accurately predicted
spatiotemporal values. In contrast, non-weather-specific models failed to replicate the
congestion waves.
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This study advances the understanding of how weather conditions, particularly rainfall,
affect traffic flow parameters and dynamics. By enhancing predictive models for traffic
management and control strategies, the research contributes to the development of
resilient systems that maintain efficiency and safety during adverse weather. Notably,
it is the first comprehensive study to incorporate extensive rainfall data, offering a
robust and longitudinal perspective on rainy conditions. This approach addresses gaps
in previous research, which either assumed clear weather or analyzed limited rainy-day
data, yielding incomplete conclusions.

A significant focus of the study is the rigorous evaluation of the METANET model
under varying weather conditions. By assessing its calibration and validation accuracy,
sensitivity to parameter variations, and ability to replicate traffic flow characteristics
such as congestion tracking, the research highlights the model's adaptability. The
innovative use of multiple fundamental diagrams in the calibration process further
improves the model’s robustness across different traffic regimes and weather scenarios.
Additionally, the study includes a practical sensitivity analysis, identifying parameters
most affected by adverse weather, enabling traffic engineers to refine models, optimize
signal control, enhance route guidance, and develop adaptive traffic management
strategies.

The findings have significant practical applications in traffic management and urban
planning. They provide insights into designing resilient infrastructure, such as weather-
protected lanes, improved drainage systems, and real-time road monitoring
technologies. Real-time traffic control systems informed by this research can
dynamically adjust speed limits, issue warnings through variable message signs, and
respond to rainfall, reducing accidents and managing congestion effectively.
Furthermore, the refined METANET parameters improve the predictive accuracy of
traffic patterns, aiding resource allocation during adverse weather conditions.

Overall, this study offers a deeper understanding of how weather influences traffic
congestion. The findings support the development of weather-responsive strategies that
enhance road safety, efficiency, and resilience, ultimately benefiting traffic
management, urban planning, and real-time control systems in mitigating the impacts
of inclement weather.

The METANET model, while effective for macroscopic traffic flow modeling, has
limitations in capturing intricate vehicle interactions in high-density or complex
scenarios, such as urban congestion or merging behaviors. Calibration for this study
used data from the Burapha Whiti Expressway in Bangkok, making the parameters
specific to that roadway and less generalizable to other networks with different
geometries, lane configurations, or environmental conditions. The reliance on the
Nelder-Mead optimization method may have further limited the findings due to
convergence on local minima.

The study analyzed clear and rainy weather but excluded other factors like temperature,
wind, or seasonal variations, which could also affect traffic. Low-resolution microwave
radar data collected every five minutes may have missed short-term fluctuations,
reducing the model's sensitivity to finer changes in traffic flow. Future research could
address these gaps by incorporating higher-resolution or additional data sources and
exploring a broader range of environmental conditions.
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Future studies could also explore integrating METANET with adaptive and predictive
control strategies, such as ramp metering, variable speed limits, and coordinated signal
timings. These enhancements would improve real-time congestion management and
expand the model’s applicability to diverse and complex traffic scenarios.
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